HARMONIC HARDY-ORLICZ SPACES

被引:3
|
作者
Kilpelainen, Tero [1 ]
Koskela, Pekka [1 ]
Masaoka, Hiroaki [1 ,2 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
[2] Kyoto Sangyo Univ, Fac Sci, Dept Math, Kita Ku, Kyoto 6038555, Japan
关键词
P-Brelot harmonic space; harmonic Hardy-Orlicz space; minimal Martin boundary; harmonic measure;
D O I
10.5186/aasfm.2013.3816
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an open hyperbolic Riemannian manifold, we show that various vector spaces of harmonic functions coincide if and only if they are finite dimensional.
引用
收藏
页码:309 / 325
页数:17
相关论文
共 50 条
  • [31] LINEAR FUNCTIONALS IN HARDY-ORLICZ SPACES .1.
    LESNIEWICZ, R
    STUDIA MATHEMATICA, 1973, 46 (01) : 53 - 77
  • [32] LINEAR FUNCTIONALS IN HARDY-ORLICZ SPACES .3.
    LESNIEWICZ, R
    STUDIA MATHEMATICA, 1973, 47 (03) : 261 - 284
  • [33] LINEAR FUNCTIONALS IN HARDY-ORLICZ SPACES, .2.
    LESNIEWICZ, R
    STUDIA MATHEMATICA, 1973, 46 (03) : 259 - 295
  • [34] Noncommutative martingale Hardy-Orlicz spaces: Dualities and inequalities
    Yong Jiao
    Lian Wu
    Dejian Zhou
    Science China Mathematics, 2023, 66 : 2081 - 2104
  • [35] Noncommutative martingale Hardy-Orlicz spaces:Dualities and inequalities
    Yong Jiao
    Lian Wu
    Dejian Zhou
    Science China(Mathematics), 2023, 66 (09) : 2081 - 2104
  • [36] Noncommutative martingale Hardy-Orlicz spaces: Dualities and inequalities
    Jiao, Yong
    Wu, Lian
    Zhou, Dejian
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (09) : 2081 - 2104
  • [37] A characterization of Hardy-Orlicz spaces on C-n
    Ouyang, CH
    Riihentaus, J
    MATHEMATICA SCANDINAVICA, 1997, 80 (01) : 25 - 40
  • [38] Composition Operators from Hardy-Orlicz Spaces to Bloch-Orlicz Type Spaces
    Zhonghua HE
    Journal of Mathematical Research with Applications, 2018, 38 (05) : 458 - 464
  • [39] HANKEL OPERATORS AND WEAK FACTORIZATION FOR HARDY-ORLICZ SPACES
    Bonami, Aline
    Grellier, Sandrine
    COLLOQUIUM MATHEMATICUM, 2010, 118 (01) : 107 - 132
  • [40] REMARKS ON HARDY-ORLICZ CLASSES
    HASUMI, M
    KATAOKA, S
    ARCHIV DER MATHEMATIK, 1988, 51 (05) : 455 - 463