On fractional modelling of viscoelastic mechanical systems

被引:40
|
作者
Lazopoulos, K. A. [1 ]
Karaoulanis, D. [2 ]
Lazopoulos, A. K. [3 ]
机构
[1] 14 Theatrou Str, Rafina 19009, Greece
[2] Natl Tech Univ Athens, Sch Appl Sci, Strength Mat Lab, Athens 15780, Greece
[3] Hellen Army Acad, Dept Math Sci, Vari 16673, Greece
关键词
D O I
10.1016/j.mechrescom.2016.10.002
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Since Leibniz's fractional derivative, introduced by Lazopoulos [1], has physical meaning contrary to other fractional derivatives, the viscoelastic mechanical systems are modelled with the help of Leibniz fractional derivative. The compliance and relaxation behaviour of the viscoelastic systems is revisited and comparison with the conventional systems and the existing fractional viscoelastic systems is presented. (C) 2016 Published by Elsevier Ltd.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [21] Viscoelastic phenomena in methylcellulose aqueous systems: Application of fractional calculus
    Miranda-Valdez, Isaac Y.
    Puente-Cordova, Jesus G.
    Renteria-Baltierrez, Flor Y.
    Fliri, Lukas
    Hummel, Michael
    Puisto, Antti
    Koivisto, Juha
    Alava, Mikko J.
    FOOD HYDROCOLLOIDS, 2024, 147
  • [22] Mechanical behaviour of a viscoelastic plastic granular material: Experimental procedure and modelling
    Laboratoire de Mécanique et Rhéologie, Université F-Rabelais Tours, Ecole d'Ingénieurs du Val de Loire, Rue de la chocolaterie - BP3410, 41034 Blois cedex, France
    不详
    WSEAS Trans. Comput., 2006, 1 (149-156):
  • [23] On Λ-Fractional Viscoelastic Models
    Lazopoulos, Anastassios K.
    Karaoulanis, Dimitrios
    AXIOMS, 2021, 10 (01) : 1 - 17
  • [24] Modelling and regulation of two mechanical systems
    de Jesus Rubio, Jose
    Pieper, Jeff
    Meda-Campana, Jesus A.
    Aguilar, Arturo
    Rangel, Vanya I.
    Juliana Gutierrez, Guadalupe
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2018, 12 (05) : 657 - 665
  • [25] Modelling and optimization of existing mechanical systems
    Hicks, BJ
    Bowler, C
    Medland, AJ
    Mullineux, G
    DESIGN METHODS FOR PERFORMANCE AND SUSTAINABILITY, 2001, : 171 - 178
  • [26] Mathematical Modelling of Viscoelastic Media Without Bulk Relaxation via Fractional Calculus Approach
    Shitikova, Marina V.
    Modestov, Konstantin A.
    MATHEMATICS, 2025, 13 (03)
  • [27] MODELLING THE TIME-DEPENDENT BEHAVIOR OF ELASTOMERS USING FRACTIONAL VISCOELASTIC MATERIAL FORMULATIONS
    Leenders, Arne
    Zadeh, Hamed Vahdati
    Wangenheim, Matthias
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 3, 2021,
  • [28] Theory and modelling of constant-Q viscoelastic anisotropic media using fractional derivative
    Qiao, Zhihao
    Sun, Chengyu
    Wu, Dunshi
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 217 (02) : 798 - 815
  • [29] APPLICATION OF FRACTIONAL CALCULUS IN MODELLING VISCOELASTIC FOUNDATION OF SHIP STRUCTURES FOR PASSIVE VIBRATION CONTROL
    Praharaj, R. K.
    Datta, N.
    PROCEEDINGS OF THE ASME 39TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2020, VOL 2B, 2020,
  • [30] Discussion of the published manuscript lazopoulos KA, karaoulanis D., lazopoulos AK (2016) ⟪on fractional modelling of viscoelastic mechanical systems⟫, mechanics research communications, 78, pp.1-5
    Tsopelas, Panos
    MECHANICS RESEARCH COMMUNICATIONS, 2017, 85 : 61 - 63