Leaderless deterministic chemical reaction networks

被引:17
|
作者
Doty, David [1 ]
Hajiaghayi, Monir [2 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Univ British Columbia, Vancouver, BC V5Z 1M9, Canada
基金
美国国家科学基金会;
关键词
Chemical reaction network; Leader election; Semilinear function; Time complexity; COMPUTATION;
D O I
10.1007/s11047-014-9435-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper answers an open question of Chen et al. (DNA 2012: proceedings of the 18th international meeting on DNA computing and molecular programming, vol 7433 of lecture notes in computer science. Springer, Berlin, pp 25-42, 2012), who showed that a function f : N-k -> N-l is deterministically computable by a stochastic chemical reaction network (CRN) if and only if the graph of f is a semilinear subset of Nk+l. That construction crucially used "leaders": the ability to start in an initial configuration with constant but non-zero counts of species other than the k species X-1, ... , X-k representing the input to the function f. The authors asked whether deterministic CRNs without a leader retain the same power. We answer this question affirmatively, showing that every semilinear function is deterministically computable by a CRN whose initial configuration contains only the input species X-1, ... , X-k, and zero counts of every other species, so long as f (0) = 0. We show that this CRN completes in expected time O(n), where n is the total number of input molecules. This time bound is slower than the O(log(5) n) achieved in Chen et al. (2012), but faster than the O(n log n) achieved by the direct construction of Chen et al. (2012).
引用
收藏
页码:213 / 223
页数:11
相关论文
共 50 条
  • [21] Siphons in Chemical Reaction Networks
    Shiu, Anne
    Sturmfels, Bernd
    BULLETIN OF MATHEMATICAL BIOLOGY, 2010, 72 (06) : 1448 - 1463
  • [22] CHEMICAL-REACTION NETWORKS
    OSTER, G
    PERELSON, A
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1974, CA21 (06): : 709 - 721
  • [23] Concordant chemical reaction networks
    Shinar, Guy
    Feinberg, Martin
    MATHEMATICAL BIOSCIENCES, 2012, 240 (02) : 92 - 113
  • [24] Asymptotology of chemical reaction networks
    Gorban, A. N.
    Radulescu, O.
    Zinovyev, A. Y.
    CHEMICAL ENGINEERING SCIENCE, 2010, 65 (07) : 2310 - 2324
  • [25] Siphons in Chemical Reaction Networks
    Anne Shiu
    Bernd Sturmfels
    Bulletin of Mathematical Biology, 2010, 72 : 1448 - 1463
  • [26] Identifiability of chemical reaction networks
    Craciun, Gheorghe
    Pantea, Casian
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 44 (01) : 244 - 259
  • [27] An antidote for chemical reaction networks
    Zamberlan, Francesco
    NATURE CATALYSIS, 2023, 6 (12) : 1104 - 1104
  • [28] On the multistationarity of chemical reaction networks
    Kaufman, Marcelle
    Soule, Christophe
    JOURNAL OF THEORETICAL BIOLOGY, 2019, 465 : 126 - 133
  • [29] Translated Chemical Reaction Networks
    Matthew D. Johnston
    Bulletin of Mathematical Biology, 2014, 76 : 1081 - 1116
  • [30] Translated Chemical Reaction Networks
    Johnston, Matthew D.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2014, 76 (05) : 1081 - 1116