GAN Against Adversarial Attacks in Radio Signal Classification

被引:13
|
作者
Wang, Zhaowei [1 ,2 ]
Liu, Weicheng [1 ,2 ]
Wang, Hui-Ming [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Informat & Commun Engn, Key Lab Intelligent Networks & Networks Secur, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Key Lab Intelligent Networks & Networks Secur, Minist Educ, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Automatic modulation classification; adversarial attacks; GAN; deep learning; wireless security;
D O I
10.1109/LCOMM.2022.3206115
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Although Deep Neural Networks (DNN) can achieve state-of-the-art performance in automatic modulation recognition (AMC) tasks, they have sufferd tremendous failures from adversarial attacks, which means the input signals are contaminated by imperceptible but intentional perturbations. However, little work has been done to consider eliminating adversarial perturbations while keeping the high classification accuracy of clean signals. In this letter, we propose an effective data preprocess framework based on Generative Adversarial Nets (GAN) to defend against the adversarial examples. The experiments show that the proposed method can effectively eliminate adversarial perturbations and maintain the high classification accuracy of clean samples.
引用
收藏
页码:2851 / 2854
页数:4
相关论文
共 50 条
  • [11] On the Effectiveness of Adversarial Training in Defending against Adversarial Example Attacks for Image Classification
    Park, Sanglee
    So, Jungmin
    APPLIED SCIENCES-BASEL, 2020, 10 (22): : 1 - 16
  • [12] XGAN : Adversarial Attacks with GAN
    Fang, Xiaoyu
    Cao, Guoxu
    Song, Huapeng
    Ouyang, Zhiyou
    2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2019, 11321
  • [13] Collaborative Defense-GAN for protecting adversarial attacks on classification system
    Laykaviriyakul, Pranpaveen
    Phaisangittisagul, Ekachai
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 214
  • [14] GAN-Based Siamese Neuron Network for Modulation Classification Against White-Box Adversarial Attacks
    Zhou, Xiaoyu
    Qi, Peihan
    Zhang, Weilin
    Zheng, Shilian
    Zhang, Ning
    Li, Zan
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (01) : 122 - 137
  • [15] A Robust Approach for Securing Audio Classification Against Adversarial Attacks
    Esmaeilpour, Mohammad
    Cardinal, Patrick
    Koerich, Alessandro
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2020, 15 : 2147 - 2159
  • [16] Evidential classification for defending against adversarial attacks on network traffic
    Beechey, Matthew
    Lambotharan, Sangarapillai
    Kyriakopoulos, Konstantinos G.
    INFORMATION FUSION, 2023, 92 : 115 - 126
  • [17] HFAD: Homomorphic Filtering Adversarial Defense Against Adversarial Attacks in Automatic Modulation Classification
    Zhang, Sicheng
    Lin, Yun
    Yu, Jiarun
    Zhang, Jianting
    Xuan, Qi
    Xu, Dongwei
    Wang, Juzhen
    Wang, Meiyu
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (03) : 880 - 892
  • [18] PSAT-GAN: Efficient Adversarial Attacks Against Holistic Scene Understanding
    Wang, Lin
    Yoon, Kuk-Jin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 7541 - 7553
  • [19] Adversarial Attacks Against IoT Networks using Conditional GAN based Learning
    Benaddi, Hafsa
    Jouhari, Mohammed
    Ibrahimi, Khalil
    Benslimane, Abderrahim
    Amhoud, El Mehdi
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2788 - 2793
  • [20] Transformer Based Defense GAN Against Palm-Vein Adversarial Attacks
    Li, Yantao
    Ruan, Song
    Qin, Huafeng
    Deng, Shaojiang
    El-Yacoubi, Mounim A.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 1509 - 1523