Automatic Compression Ratio Allocation for Pruning Convolutional Neural Networks

被引:0
|
作者
Liu, Yunfeng [1 ]
Kong, Huihui [1 ]
Yu, Peihua [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Neural Networks; Network Pruning; Model Compression; Computer Vision;
D O I
10.1145/3387168.3387184
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks (CNNs) have demonstrated significant performance improvement in many application scenarios. However, the high computational complexity and model size have limited its application on the mobile and embedded devices. Various approaches have been proposed to compress CNNs. Filter pruning is widely considered as a promising solution, which can significantly speed up the inference and reduce memory consumption. To this end, most approaches tend to prune filters by manually allocating compression ratio, which highly relies on individual expertise and not friendly to non-professional users. In this paper, we propose an Automatic Compression Ratio Allocation (ACRA) scheme based on binary search algorithm to prune convolutional neural networks. Specifically, ACRA provides two strategies for allocating compression ratio automatically. First, uniform pruning strategy allocates the same compression ratio to each layer, which is obtained by binary search based on target FLOPs reduction of the whole networks. Second, sensitivity-based pruning strategy allocates appropriate compression ratio to each layer based on the sensitivity to accuracy. Experimental results from VGG11 and VGG-16, demonstrate that our scheme can reduce FLOPs significantly while maintaining a high accuracy level. Specifically, for the VGG16 on CIFAR-10 dataset, we reduce 29.18% FLOPs with only 1.24% accuracy decrease.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Dynamic connection pruning for densely connected convolutional neural networks
    Hu, Xinyi
    Fang, Hangxiang
    Zhang, Ling
    Zhang, Xue
    Yang, Howard H.
    Yang, Dongxiao
    Peng, Bo
    Li, Zheyang
    Hu, Haoji
    APPLIED INTELLIGENCE, 2023, 53 (16) : 19505 - 19521
  • [32] Loss-Driven Channel Pruning of Convolutional Neural Networks
    Long, Xin
    Zeng, Xiangrong
    Chen, Chen
    Xiao, Huaxin
    Zhang, Maojun
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2020, E103D (05) : 1190 - 1194
  • [33] REAP: A Method for Pruning Convolutional Neural Networks with Performance Preservation
    Kamma, Koji
    Wada, Toshikazu
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (01) : 194 - 202
  • [34] Exploiting Gaussian distribution in channel pruning for convolutional neural networks
    Liu, Yuzhou
    Liu, Bo
    Lin, Weiwei
    Yan, Yuanchao
    Zhang, Li
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (05):
  • [35] Global balanced iterative pruning for efficient convolutional neural networks
    Chang, Jingfei
    Lu, Yang
    Xue, Ping
    Xu, Yiqun
    Wei, Zhen
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (23): : 21119 - 21138
  • [36] Pruning convolutional neural networks via filter similarity analysis
    Lili Geng
    Baoning Niu
    Machine Learning, 2022, 111 : 3161 - 3180
  • [37] Entropy-based pruning method for convolutional neural networks
    Cheonghwan Hur
    Sanggil Kang
    The Journal of Supercomputing, 2019, 75 : 2950 - 2963
  • [38] Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks
    He, Yang
    Dong, Xuanyi
    Kang, Guoliang
    Fu, Yanwei
    Yan, Chenggang
    Yang, Yi
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (08) : 3594 - 3604
  • [39] Global balanced iterative pruning for efficient convolutional neural networks
    Jingfei Chang
    Yang Lu
    Ping Xue
    Yiqun Xu
    Zhen Wei
    Neural Computing and Applications, 2022, 34 : 21119 - 21138
  • [40] Pruning convolutional neural networks via filter similarity analysis
    Geng, Lili
    Niu, Baoning
    MACHINE LEARNING, 2022, 111 (09) : 3161 - 3180