Direct carbon conversion in a SOFC-system with a non-porous anode

被引:81
|
作者
Nuernberger, S. [1 ]
Bussar, R. [1 ]
Desclaux, P. [1 ]
Franke, B. [1 ]
Rzepka, M. [1 ]
Stimming, U. [1 ,2 ]
机构
[1] ZAE Bayern, Div 1, D-85748 Garching, Germany
[2] Tech Univ Munich, Dept Phys E19, D-85748 Garching, Germany
关键词
BED FUEL-CELL; ELECTROCHEMICAL OXIDATION;
D O I
10.1039/b916995d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The direct carbon fuel cell (DCFC) is a special type of high temperature fuel cell which allows direct conversion of the chemical energy of different carbon materials into electricity. The thermodynamic efficiency of this process is high, and thus the overall conversion efficiency has the potential to exceed these of other fuel cell concepts. Until now the most developed DCFC-systems are based on molten carbonate or hydroxide as electrolyte. In this publication we show that also for a system with a solid electrolyte such as in solid oxide fuel cells (SOFC), which suffers, in principle, from limited contact between the solid fuel and the solid electrolyte, significant conversion rates can be achieved at such interfaces. The principal aspects of the direct electrochemical conversion of carbon powders in an SOFC-system have been investigated in the temperature range of 800 degrees C to 1000 degrees C. It has been shown that using a flat planar anode, carbon conversion rates exceeding 100 mA cm(-2) are possible. Different solid fuels have been investigated in order to determine the influence of carbon properties on the electrochemical conversion.
引用
收藏
页码:150 / 153
页数:4
相关论文
共 50 条
  • [31] Direct carbon fuel conversion in a liquid antimony anode solid oxide fuel cell
    Cao, Tianyu
    Wang, Hongjian
    Shi, Yixiang
    Cai, Ningsheng
    FUEL, 2014, 135 : 223 - 227
  • [32] AN EXAMPLE OF DESORPTION HYSTERESIS AT LOW RELATIVE PRESSURES ON A NON-POROUS ADSORBENT - AMMONIA ON GRAPHITIZED CARBON BLACK
    HOLMES, JM
    BEEBE, RA
    JOURNAL OF PHYSICAL CHEMISTRY, 1957, 61 (12): : 1684 - 1686
  • [33] High power direct methanol fuel cell with a porous carbon nanofiber anode layer
    Zainoodin, A. M.
    Kamarudin, S. K.
    Masdar, M. S.
    Daud, W. R. W.
    Mohamad, A. B.
    Sahari, J.
    APPLIED ENERGY, 2014, 113 : 946 - 954
  • [34] Non-porous reference carbon for N2 (77.4 K) and Ar (87.3 K) adsorption
    Silvestre-Albero, A.
    Silvestre-Albero, J.
    Martinez-Escandell, M.
    Futamura, R.
    Itoh, T.
    Kaneko, K.
    Rodriguez-Reinoso, F.
    CARBON, 2014, 66 : 699 - 704
  • [35] STANDARD DATA FOR ADSORPTION OF CARBON TETRACHLORIDE VAPOUR ON NON-POROUS HYDROXYLATED SILICA AT 20 DEGREES C
    CUTTING, PA
    SING, KSW
    CHEMISTRY & INDUSTRY, 1969, (09) : 268 - &
  • [36] Simplified denitrification system using ethanol released from non-porous polyethylene-film bag
    Uemoto, Hiroaki
    Suzuki, Masahiro
    Morita, Masahiko
    Watanabe, Atsushi
    Shinozaki, Hiraku
    BIOCHEMICAL ENGINEERING JOURNAL, 2009, 45 (01) : 35 - 40
  • [37] Porous Carbon as Anode Catalyst Support to Improve Borohydride Utilization in a Direct Borohydride Fuel Cell
    Li, G. R.
    Wang, Q. Q.
    Liu, B. H.
    Li, Z. P.
    Fuel Cells, 2015, 15 (02) : 270 - 277
  • [38] Porous ceria materials for efficient direct conversion of carbon dioxide and methanol to dimethyl carbonate
    Yang, Zhuxian
    Zheng, Justin Tay
    Lu, Xinhuan
    Lin, Monica Mengdie
    Cai, Dongming
    Wang, Yankun
    Yu, Wen-Yueh
    Zhu, Yanqiu
    Xia, Yongde
    MATERIALS ADVANCES, 2024, 5 (16): : 6605 - 6617
  • [39] Advanced Direct-polish Process on Organic Non-porous Ultra Low-k Fluorocarbon Dielectric on Cu Interconnects
    Gu, Xun
    Nemoto, Takenao
    Tomita, Yugo
    Mateo, Ricardo Duyos
    Teramoto, Akinobu
    Kuroki, Shin-Ichiro
    Sugawa, Shigetoshi
    Ohmi, Tadahiro
    CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE 2011 (CSTIC 2011), 2011, 34 (01): : 653 - 658
  • [40] Direct JP-8 Conversion Using a Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC) for Military Applications
    McPhee, W. A. G.
    Bateman, L.
    Koslowske, M.
    Slaney, M.
    Uzep, Z.
    Bentley, J.
    Tao, T.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2011, 8 (04):