A Combined Full-Reference Image Quality Assessment Method Based on Convolutional Activation Maps

被引:4
|
作者
Varga, Domonkos [1 ]
机构
[1] Budapest Univ Technol & Econ, Dept Networked Syst & Serv, H-1111 Budapest, Hungary
关键词
full-reference image quality assessment; deep learning; convolutional neural networks; SIMILARITY INDEX; DEVIATION; EFFICIENT;
D O I
10.3390/a13120313
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The goal of full-reference image quality assessment (FR-IQA) is to predict the perceptual quality of an image as perceived by human observers using its pristine (distortion free) reference counterpart. In this study, we explore a novel, combined approach which predicts the perceptual quality of a distorted image by compiling a feature vector from convolutional activation maps. More specifically, a reference-distorted image pair is run through a pretrained convolutional neural network and the activation maps are compared with a traditional image similarity metric. Subsequently, the resulting feature vector is mapped onto perceptual quality scores with the help of a trained support vector regressor. A detailed parameter study is also presented in which the design choices of the proposed method is explained. Furthermore, we study the relationship between the amount of training images and the prediction performance. Specifically, it is demonstrated that the proposed method can be trained with a small amount of data to reach high prediction performance. Our best proposal-called ActMapFeat-is compared to the state-of-the-art on six publicly available benchmark IQA databases, such as KADID-10k, TID2013, TID2008, MDID, CSIQ, and VCL-FER. Specifically, our method is able to significantly outperform the state-of-the-art on these benchmark databases.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Combining CNN and transformers for full-reference and no-reference image quality assessment
    Zeng, Chao
    Kwong, Sam
    NEUROCOMPUTING, 2023, 549
  • [22] Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment
    Bosse, Sebastian
    Maniry, Dominique
    Mueller, Klaus-Robert
    Wiegand, Thomas
    Samek, Wojciech
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) : 206 - 219
  • [23] Disparity Weighting Applied to Full-Reference and No Reference Stereoscopic Image Quality Assessment
    de Miranda Cardoso, Jose Vinicius
    Miranda Regis, Carlos Danilo
    de Alencar, Marcelo Sampaio
    2015 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2015, : 477 - 480
  • [24] A Full-Reference Image Quality Assessment for Multiply Distorted Image based on Visual Mutual Information
    Zhang, Yin
    Bai, Xuehan
    Yan, Junhua
    Xiao, Yongqi
    Zhang, Wanyi
    Chatwin, C. R.
    Young, R. C. D.
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2019, 63 (06)
  • [25] Saliency-Guided Local Full-Reference Image Quality Assessment
    Varga, Domonkos
    SIGNALS, 2022, 3 (03): : 483 - 496
  • [26] Full-reference image quality assessment scheme based on deformed pixel and gradient similarity
    Seghir, Zianou Ahmed
    Hachouf, Fella
    OPTIK, 2015, 126 (24): : 5946 - 5951
  • [27] A feature-level full-reference image denoising quality assessment method based on joint sparse representation
    Hu, Yanxiang
    Zhang, Bo
    Zhang, Ya
    Jiang, Chuan
    Chen, Zhijie
    APPLIED INTELLIGENCE, 2022, 52 (10) : 11115 - 11130
  • [28] SPSIM: A Superpixel-Based Similarity Index for Full-Reference Image Quality Assessment
    Sun, Wen
    Liao, Qingmin
    Xue, Jing-Hao
    Zhou, Fei
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (09) : 4232 - 4244
  • [29] Full-Reference Predictive Modeling of Subjective Image Quality Assessment with ANFIS
    El-Alfy, El-Sayed M.
    Riaz, Mohammed Rehan
    AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2014, 2015, 8946 : 296 - 311
  • [30] Hybrid Feature Similarity Approach to Full-Reference Image Quality Assessment
    Okarma, Krzysztof
    COMPUTER VISION AND GRAPHICS, 2012, 7594 : 212 - 219