Non-uniqueness of minimal superpermutations

被引:2
|
作者
Johnston, Nathaniel [1 ,2 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Superpermutation; Permutation; Shortest superstring; SUPERSTRINGS;
D O I
10.1016/j.disc.2013.03.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine the open problem of finding the shortest string that contains each of the n! permutations of n symbols as contiguous substrings (i.e., the shortest superpermutation on n symbols). It has been conjectured that the shortest superpermutation has length Sigma(n)(k=1) k! and that this string is unique up to relabelling of the symbols. We provide a construction of short superpermutations that shows that if the conjectured minimal length is true, then uniqueness fails for all n >= 5. Furthermore, uniqueness fails spectacularly; we construct more than doubly-exponentially many distinct superpermutations of the conjectured minimal length. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1553 / 1557
页数:5
相关论文
共 50 条
  • [21] Non-uniqueness of atmospheric modeling
    Judge, PG
    McIntosh, SW
    SOLAR PHYSICS, 1999, 190 (1-2) : 331 - 350
  • [22] Non-uniqueness and instability of 'ankylography'
    Wang, Ge
    Yu, Hengyong
    Cong, Wenxiang
    Katsevich, Alexander
    NATURE, 2011, 480 (7375) : E2 - E3
  • [23] Complexity, Networks, and Non-Uniqueness
    Alan Baker
    Foundations of Science, 2013, 18 : 687 - 705
  • [24] Non-uniqueness and instability of ‘ankylography’
    Ge Wang
    Hengyong Yu
    Wenxiang Cong
    Alexander Katsevich
    Nature, 2011, 480 : E2 - E3
  • [25] NON-UNIQUENESS IN ELASTOPLASTIC ANALYSIS
    TINLOI, F
    WONG, MB
    MECHANICS OF STRUCTURES AND MACHINES, 1989, 16 (04): : 423 - 437
  • [26] Uniqueness and non-uniqueness in the non-axisymmetric direction problem
    Kaiser, R.
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2012, 65 (03): : 347 - 360
  • [27] Uniqueness and non-uniqueness in acoustic tomography of moving fluid
    Agaltsov, Alexey D.
    Novikov, Roman G.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2016, 24 (03): : 333 - 340
  • [28] On the non-uniqueness of minimal projections in l1n and discrete Walsh projections
    Skrzypek, Leslaw
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E2431 - E2436
  • [29] NON-UNIQUENESS IN PLANE FLUID FLOWS
    Gimperlein, Heiko
    Grinfeld, Michael
    Knops, Robin J.
    Slemrod, Marshall
    QUARTERLY OF APPLIED MATHEMATICS, 2024, 82 (03) : 535 - 561
  • [30] Non-uniqueness in G-measures
    Dooley, A. H.
    Rudolph, Daniel J.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 575 - 586