Microfluidic Paper-based Analytical Device for the Determination of Hexavalent Chromium by Photolithographic Fabrication Using a Photomask Printed with 3D Printer

被引:0
|
作者
Asano, Hitoshi [1 ]
Shiraishi, Yukihide [2 ]
机构
[1] Tokyo Univ Sci, Ctr Liberal Arts & Sci, 1-1-1 Daigaku Dori, Yamaguchi 7560884, Japan
[2] Tokyo Univ Sci, Fac Engn, Dept Appl Chem, 1-1-1 Daigaku Dori, Yamaguchi 7560884, Japan
关键词
Paper-based analytical device; microfluidics; hexavalent chromium; 3D printer; photolithography; colorimetry; RGB color; ATOMIC-ABSORPTION-SPECTROMETRY; RIVER WATER; SYSTEM; SPECIATION; METALS; PRECONCENTRATION; QUANTIFICATION; COPPER(II); IRON(II); PLATFORM;
D O I
暂无
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This article describes a simple and inexpensive microfluidic paper-based analytical device (mu PAD) for the determination of hexavalent chromium (Cr-VI) in water samples. The mu PADs were fabricated on paper by photolithography using a photomask printed with a 3D printer and functionalized with reagents for a colorimetric assay. In the mu PAD, Cr-VI reacts with 1,5-diphenylcarbazide to form a violet-colored complex. Images of mu PADs were captured with a digital camera; then the red, green, and blue color intensity of each detection zone were measured using images processing software. The green intensity analysis was the best sensitive among the RGB color. A linear working range (40 - 400 ppm; R-2 = 0.981) between the Cr-VI and green intensity was obtained with a detection limit of 30 ppm. All of the recoveries were between 94 and 109% in recovery studies on water samples, and good results were obtained.
引用
收藏
页码:71 / 74
页数:4
相关论文
共 50 条
  • [11] Realization of Microfluidic Paper-Based Analytical Devices Using a 3-D Printer: Characterization and Optimization
    Puneeth, S. B.
    Salve, Mary
    Akshatha, R.
    Goel, Sanket
    IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2019, 19 (03) : 529 - 536
  • [12] Paper-based 3D microfluidic device for multiple bioassays
    Choi, Samjin
    Kim, Su-Kang
    Lee, Gi-Ja
    Park, Hun-Kuk
    SENSORS AND ACTUATORS B-CHEMICAL, 2015, 219 : 245 - 250
  • [13] Electrochemical immunoassay on a 3D microfluidic paper-based device
    Zang, Dejin
    Ge, Lei
    Yan, Mei
    Song, Xianrang
    Yu, Jinghua
    CHEMICAL COMMUNICATIONS, 2012, 48 (39) : 4683 - 4685
  • [14] Using Agaricus bisporus crude extract in distance based 3D microfluidic paper-based analytical device and spectrophotometric analytical procedures for thiols determination
    Morosanova, M. A.
    Golovacheva, N. V.
    Morosanova, E. I.
    TALANTA, 2025, 286
  • [15] A microfluidic paper-based analytical device for rapid quantification of particulate chromium
    Rattanarat, Poomrat
    Dungchai, Wijitar
    Cate, David M.
    Siangproh, Weena
    Volckens, John
    Chailapakul, Orawon
    Henry, Charles S.
    ANALYTICA CHIMICA ACTA, 2013, 800 : 50 - 55
  • [16] Colorimetric determination of acidity constant using a paper-based microfluidic analytical device
    Taghizadeh-Behbahani, Maryam
    Hemmateenejad, Bahram
    Shamsipur, Mojtaba
    CHEMICAL PAPERS, 2018, 72 (05) : 1239 - 1247
  • [17] Microfluidic Paper-Based Analytical Device for the Determination of Nitrite and Nitrate
    Jayawardane, B. Manori
    Wei, Shen
    McKelvie, Ian D.
    Kolev, Spas D.
    ANALYTICAL CHEMISTRY, 2014, 86 (15) : 7274 - 7279
  • [18] Colorimetric determination of acidity constant using a paper-based microfluidic analytical device
    Maryam Taghizadeh-Behbahani
    Bahram Hemmateenejad
    Mojtaba Shamsipur
    Chemical Papers, 2018, 72 : 1239 - 1247
  • [19] 3D microfluidic paper-based analytical devices for colorimetric bioassays
    Neris, Natalia
    Wong, Alyssa
    Fernandez, Alyssa
    Gomez, Frank
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [20] Paper-Based Microfluidic Analytical Device Patterned by Label Printer for Point-of-Care Blood Glucose and Hematocrit Detection Using 3D-Printed Smartphone Cassette
    Cai, Zong-Xiao
    Jiang, Ming-Zhang
    Chuang, Ya-Ju
    Kuo, Ju-Nan
    SENSORS, 2024, 24 (15)