We consider the method of alternating projections for finding a point in the intersection of two closed sets, possibly nonconvex. Assuming only the standard transversality condition (or a weaker version thereof), we prove local linear convergence. When the two sets are semi-algebraic and bounded, but not necessarily transversal, we nonetheless prove subsequence convergence.
机构:
Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, AustraliaUniv New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
Li, Guoyin
Tang, Chunming
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ, Dept Math, Shanghai, Peoples R China
Guangxi Univ, Dept Math & Informat Sci, Nanning 530004, Guangxi, Peoples R ChinaUniv New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
Tang, Chunming
Yu, Gaohang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Dept Sci Computat & Comp Applicat, Guangzhou 510275, Guangdong, Peoples R ChinaUniv New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
Yu, Gaohang
Wei, Zengxin
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Univ, Dept Math & Informat Sci, Nanning 530004, Guangxi, Peoples R ChinaUniv New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia