Transversality and Alternating Projections for Nonconvex Sets

被引:57
|
作者
Drusvyatskiy, D. [1 ]
Ioffe, A. D. [2 ]
Lewis, A. S. [3 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[3] Cornell Univ, ORIE, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Alternating projections; Linear convergence; Variational analysis; Slope; Transversality; CONVERGENCE; REGULARITY; MANIFOLDS; SARD;
D O I
10.1007/s10208-015-9279-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the method of alternating projections for finding a point in the intersection of two closed sets, possibly nonconvex. Assuming only the standard transversality condition (or a weaker version thereof), we prove local linear convergence. When the two sets are semi-algebraic and bounded, but not necessarily transversal, we nonetheless prove subsequence convergence.
引用
收藏
页码:1637 / 1651
页数:15
相关论文
共 50 条
  • [21] ATTRACTING SETS WITH A STRICT TRANSVERSALITY CONDITION ON THE BOUNDARY
    PILYUGIN, SY
    DIFFERENTIAL EQUATIONS, 1986, 22 (09) : 1063 - 1069
  • [22] Alternating projections on manifolds
    Lewis, Adrian S.
    Malick, Jerome
    MATHEMATICS OF OPERATIONS RESEARCH, 2008, 33 (01) : 216 - 234
  • [23] STOCHASTIC ALTERNATING PROJECTIONS
    Diaconis, Persi
    Khare, Kshitij
    Saloff-Coste, Laurent
    ILLINOIS JOURNAL OF MATHEMATICS, 2010, 54 (03) : 963 - 979
  • [24] Additive and geometric transversality of fractal sets in the integers
    Glasscock, Daniel
    Moreira, Joel
    Richter, Florian K.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (05):
  • [25] On a Separation Principle for Nonconvex Sets
    Li, Guoyin
    Tang, Chunming
    Yu, Gaohang
    Wei, Zengxin
    SET-VALUED ANALYSIS, 2008, 16 (7-8): : 851 - 860
  • [26] Minimization over Nonconvex Sets
    Membrilla, Jose Antonio Vilchez
    Moreno, Victor Salas
    Moreno-Pulido, Soledad
    Sanchez-Alzola, Alberto
    Cobos Sanchez, Clemente Cobos
    Garcia-Pacheco, Francisco Javier
    SYMMETRY-BASEL, 2024, 16 (07):
  • [27] MIXED VOLUMES OF NONCONVEX SETS
    WEIL, W
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 53 (01) : 191 - 194
  • [28] On a Separation Principle for Nonconvex Sets
    Guoyin Li
    Chunming Tang
    Gaohang Yu
    Zengxin Wei
    Set-Valued Analysis, 2008, 16 : 851 - 860
  • [29] Alternating projections, remotest projections, and greedy approximation
    Borodin, Petr A.
    Kopecka, Eva
    JOURNAL OF APPROXIMATION THEORY, 2020, 260
  • [30] SETS WITH PRESCRIBED PROJECTIONS AND NIKODYM SETS
    FALCONER, KJ
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1986, 53 : 48 - 64