Thermal conductivity of diamond films:: 0.5 μm to 0.5 μm

被引:0
|
作者
Graebner, JE [1 ]
机构
[1] Lucent Technol, AT&T Bell Labs, Murray Hill, NJ 07974 USA
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A review of the thermal properties of chemical-vapor-deposited (CVD) diamond ranging in thickness from 0.5 mu m to 0.5 mm is presented. The typical columnar microstructure of the material has a strong influence on the thermal properties, causing a steep gradient in both the in-plane (kappa(parallel to)) and normal (kappa(perpendicular to)) conductivities, as well as considerable anisotropy. Data for kappa(parallel to) from above room temperature down to liquid helium temperatures for high-quality thick samples has revealed several types of phonon scattering centers preferentially located along grain boundaries. This model of dirty grain boundaries provides a framework for understanding the conductivity of thinner, lower-quality material. The general difficulty of identifying microscopic sources of thermal resistance in CVD diamond is discussed, especially in view of the tendency for the concentrations of many types of defects to be highly correlated with each other. Finally, recent work on interfacial resistance between CVD diamond and Si substrate shows that the columnar microstructure has a strong influence for high-quality films as thin as 2 mu m.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Thermoluminescence assessment of 0.5, 1.0 and 4.0 μm thick HFCVD undoped diamond films
    Melendrez, R.
    Chernov, V.
    May, P. W.
    Castaneda, B.
    Pedroza-Montero, M.
    Barboza-Flores, M.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2009, 206 (09): : 2103 - 2108
  • [2] Ion mobility and conductivity in the M0.5-xPbxBi0.5F2+x (M=K, Rb) solid solutions with fluorite structure
    Kavun, V. Ya.
    Uvarov, N. F.
    Slobodyuk, A. B.
    Polyantsev, M. M.
    Merkulov, E. B.
    Ulihin, A. S.
    Goncharuk, V. K.
    JOURNAL OF SOLID STATE CHEMISTRY, 2017, 249 : 204 - 209
  • [3] NEW CHALCOGENIDES OF TYPE M+0.5IN0.5M23+X4
    ROBBINS, M
    MIKSOVSKY, MA
    MATERIALS RESEARCH BULLETIN, 1971, 6 (05) : 359 - +
  • [4] Electrolytic conductivity at 0.5 S m-1 and 5 mS m-1
    Seitz, S.
    Sander, B.
    Snedden, A.
    DeLeeBeeck, L.
    Canaza, G. T.
    Asakai, T.
    Maksimov, I.
    Song, X.
    Wang, H.
    Kozlowski, W.
    Dumanska, J.
    Jakusovszky, B.
    Szilagyi, Z. N.
    Gavrilkin, V.
    Stennik, O.
    Ovchinnikov, Y.
    Gonzaga, F. B.
    Cunha, K. da Cruz
    Ferraz, S. F.
    Hankova, Z.
    Mariassy, M.
    Vicarova, M.
    Vospelova, A.
    Ortiz-Aparicio, J. L.
    Lara-Manzano, J. V.
    Uribe-Godinez, J.
    Stoica, D.
    Fisicaro, P.
    Suvorov, V. I.
    Konopelko, L. A.
    Smirnov, A. M.
    Amaya, R. C.
    Quezada, H. T.
    METROLOGIA, 2017, 54
  • [5] Terahertz conductivity in FeSe0.5Te0.5 superconducting films
    Pimenov, A.
    Engelbrecht, S.
    Shuvaev, A. M.
    Jin, B. B.
    Wu, P. H.
    Xu, B.
    Cao, L. X.
    Schachinger, E.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [6] Metrology of sub-0.5 μm silicon epitaxial films
    Chen, WZ
    Reif, R
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1998, 16 (04): : 2330 - 2336
  • [7] Dramatic thermal conductivity reduction in PbSe0.5Te0.5
    Basu, Ranita
    Bhattacharya, S.
    Bhatt, Ranu
    Singh, Ajay
    Aswal, D. K.
    Gupta, S. K.
    SOLID STATE PHYSICS, VOL 57, 2013, 1512 : 1002 - 1003
  • [8] Synthesis and Magnetic Properties of L0.5Sr0.5Mn0.5M0.5O3 (L = Y, Pr; M = Cu, Ru)
    N. Balchev
    K. Nenkov
    B. Kunev
    J. Pirov
    M. Baychev
    A. Souleva
    Journal of Superconductivity, 2004, 17 : 363 - 367
  • [9] Synthesis and magnetic properties of L0.5Sr0.5Mn0.5M0.5O3 (L = Y, Pr; M = Cu, Ru)
    Balchev, N
    Nenkov, K
    Kunev, B
    Pirov, J
    Baychev, M
    Souleva, A
    JOURNAL OF SUPERCONDUCTIVITY, 2004, 17 (03): : 363 - 367
  • [10] Thermal conductivity of diamond films
    Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974
    J. Wide Bandgap Mater., 2 (105-118):