Van der Pol Oscillator. Technical Applications

被引:7
|
作者
Zhuravlev, V. Ph. [1 ]
机构
[1] Ishlinsky Inst Problems Mech RAS, Moscow 119526, Russia
关键词
wave solid-state gyroscope; strapdown inertial navigation system;
D O I
10.3103/S0025654420010203
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Van der Pol equations describing self-oscillations in a quasilinear one-dimensional oscillator are generalized to the case when the generating isotropic oscillator has an arbitrary number of degrees of freedom. Two-dimensional (flat) and three-dimensional (spatial) cases are specifically considered. In contrast to the classical problem, in which a given amplitude of oscillations was stabilized, in the general case it is possible to stabilize not only the oscillation energy, but also the area of a flat elliptical trajectory, its orientation in space, the frequency of the oscillatory process, etc. The technical applications of the respective models are indicated.
引用
收藏
页码:132 / 137
页数:6
相关论文
共 50 条
  • [31] On the Van-der-Pol oscillator with noisy nonlinearity
    Grammel, G
    NONLINEARITY, 2000, 13 (04) : 1343 - 1355
  • [32] On limit cycle approximations in the van der Pol oscillator
    Padín, MS
    Robbio, FI
    Moiola, JL
    Chen, GR
    CHAOS SOLITONS & FRACTALS, 2005, 23 (01) : 207 - 220
  • [33] On the Formation of Feedbacks in the Van der Pol Spatial Oscillator
    V. F. Zhuravlev
    Mechanics of Solids, 2020, 55 : 926 - 931
  • [34] Dynamics of a simplified van der Pol oscillator revisited
    Luo, Albert C. J.
    Rajendran, Arun
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINERING CONGRESS AND EXPOSITION 2007, VOL 9, PTS A-C: MECHANICAL SYSTEMS AND CONTROL, 2008, : 1885 - 1892
  • [35] Critical Response of a Quantum van der Pol Oscillator
    Dutta, Shovan
    Cooper, Nigel R.
    PHYSICAL REVIEW LETTERS, 2019, 123 (25)
  • [36] Van der Pol oscillator with time variable parameters
    L. Cveticanin
    Acta Mechanica, 2013, 224 : 945 - 955
  • [37] The Buffer Phenomenon in the Van Der Pol Oscillator with Delay
    A. Yu. Kolesov
    N. Kh. Rozov
    Differential Equations, 2002, 38 : 175 - 186
  • [38] The existence of closed trajectory in the van der Pol oscillator
    Wang, D
    Zhou, SB
    Yu, JB
    2002 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS AND WEST SINO EXPOSITION PROCEEDINGS, VOLS 1-4, 2002, : 1629 - 1632
  • [39] Parametric excitation for forcing van der Pol oscillator
    Abd El-Latif, GM
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (01) : 255 - 265
  • [40] Van der Pol oscillator with time variable parameters
    Cveticanin, L.
    ACTA MECHANICA, 2013, 224 (05) : 945 - 955