Arithmetic on self-similar sets

被引:1
|
作者
Zhao, Bing [1 ]
Ren, Xiaomin [1 ]
Zhu, Jiali [1 ]
Jiang, Kan [1 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo, Zhejiang, Peoples R China
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2020年 / 31卷 / 04期
基金
中国国家自然科学基金;
关键词
Arithmetic operations; Interior; Fractal sets; UNIQUE EXPANSIONS;
D O I
10.1016/j.indag.2020.05.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K-1 and K-2 be two one-dimensional homogeneous self-similar sets with the same ratio of contractions. Let f be a continuous function defined on an open set U subset of R-2. Denote the continuous image of f by f(boolean OR)(K-1, K-2) = {f (x, y) : (x, y) is an element of (K-1 x K-2) boolean AND U}. In this paper we give a sufficient condition which guarantees that f(boolean OR)(K-1, K-2) contains some interiors. Our result is different from Simon and Taylor's (2020, Proposition 2.9) as we do not need the condition that the product of the thickness of K-1 and K-2 is strictly greater than 1. As a consequence, we give an application to the univoque sets in the setting of q-expansions. (C) 2020 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:595 / 606
页数:12
相关论文
共 50 条
  • [31] Digit sets for self-similar tiles
    Yu-Mei Xue
    La-na Li
    Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 493 - 498
  • [32] Bilipschitz embedding of self-similar sets
    Juan Deng
    Zhi-ying Wen
    Ying Xiong
    Li-Feng Xi
    Journal d'Analyse Mathématique, 2011, 114 : 63 - 97
  • [33] Lipschitz equivalence of self-similar sets
    Rao, H
    Ruan, HJ
    Xi, LF
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (03) : 191 - 196
  • [34] Topological structure of self-similar sets
    Luo, J
    Rao, H
    Tan, B
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (02) : 223 - 227
  • [35] Homogeneous Kernels and Self-Similar Sets
    Chousionis, Vasileios
    Urbanski, Mariusz
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (02) : 411 - 431
  • [36] Quasisymmetric equivalence of self-similar sets
    Wang, Xiaohua
    Wen, Shengyou
    Zhu, Changxin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) : 254 - 258
  • [37] Self-similar Delone sets and quasicrystals
    Masakova, Z
    Patera, J
    Pelantova, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (21): : 4927 - 4946
  • [38] On univoque points for self-similar sets
    Baker, Simon
    Dajani, Karma
    Jiang, Kan
    FUNDAMENTA MATHEMATICAE, 2015, 228 (03) : 265 - 282
  • [39] On the packing measure of self-similar sets
    Orponen, Tuomas
    NONLINEARITY, 2013, 26 (11) : 2929 - 2934
  • [40] ON CRITICAL VALUES OF SELF-SIMILAR SETS
    Pokorny, Dusan
    HOUSTON JOURNAL OF MATHEMATICS, 2014, 40 (01): : 81 - 96