Derivations of a restricted Weyl-type algebra containing the polynomial ring

被引:7
|
作者
Choi, Seul Hee [2 ]
Lee, Jongwoo [3 ]
Nam, Ki-Bong [1 ]
机构
[1] Univ Wisconsin Whitewater, Dept Math & Comp Sci, Whitewater, WI 53190 USA
[2] Jeonju Univ, Dept Math, Chonju, South Korea
[3] Seoul Natl Univ Technol, Grad Sch Railroad, Seoul, South Korea
关键词
annihilator; derivation; idempotent; kronecker delta; non-associative algebra; right identity; simple;
D O I
10.1080/00927870802107835
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Weyl type nonassociative algebra and its subalgebra have been defined in the articles Choi and Nam (2005a,b,c); Lee and Nam (2004). Several authors have found all the derivations of some given algebra (see Ahmadi et al., 2005; Choi and Nam, 2005b; Kac, 1974; Kirkman et al., 1994; Osborn, 1997; Osborn and Passman, 1995). In this article, we find all derivations of the nonassociative algebra WP0,s1,s21 and show that the dimension of all derivations of the algebra WP0,s1,s21 is (s(1)+s(2))(2)+s(1)+s(2). Because of the dimension of a derivation algebra, we know that if s(1)+s(2)s(1)'+s(2)', then the algebras WP0,s1,s21 and WP0,s1',(s21)' are not isomorphic.
引用
收藏
页码:3435 / 3446
页数:12
相关论文
共 50 条
  • [21] LOCALLY NILPOTENT DERIVATIONS AND NAGATA-TYPE AUTOMORPHISMS OF A POLYNOMIAL ALGEBRA
    Bodnarchuk, Yu. V.
    Prokof'ev, P. H.
    UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (08) : 1199 - 1214
  • [22] On some discrete Weyl-type inequalities of Pachpatte
    Alic, M
    Pearce, CEM
    Pecaric, J
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1996, 27 (06): : 575 - 579
  • [23] EXTENDED WEYL-TYPE THEOREMS FOR DIRECT SUMS
    Berkani, M.
    Kachad, M.
    Zariouh, H.
    DEMONSTRATIO MATHEMATICA, 2014, 47 (02) : 411 - 422
  • [24] Normalized Weyl-type *-product on Kahler manifolds
    Masuda, T
    MODERN PHYSICS LETTERS A, 2000, 15 (35) : 2177 - 2182
  • [25] Weyl-type fields with geodesic lines of force
    Guilfoyle, BS
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (04) : 2032 - 2045
  • [26] Weyl-type theorems for unbounded posinormal operators
    Gupta, A.
    Mamtani, K.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2017, 52 (04): : 191 - 197
  • [27] On some discrete Weyl-type inequalities of Pachpatte
    Alic, M.
    Pearce, C. E. M.
    Pecaric, J.
    Indian Journal of Pure and Applied Mathematics, 1996, 27 (06)
  • [28] Polynomial Extensions of the Weyl C*-Algebra
    Accardi, Luigi
    Dhahri, Ameur
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2015, 22 (03):
  • [29] Weyl-type theorems for unbounded posinormal operators
    A. Gupta
    K. Mamtani
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2017, 52 : 191 - 197
  • [30] On some new Weyl-type discrete inequalities
    Ma, QH
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2001, 32 (02): : 271 - 276