Multiple Sign Changing Solutions of Nonlinear Elliptic Problems in Exterior Domains

被引:0
|
作者
Clapp, Monica [1 ]
Salazar, Dora [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, CU, Mexico City 04510, DF, Mexico
关键词
Nonlinear elliptic problem; unbounded domain; multiplicity of sign changing solutions; BOUND-STATES; EXISTENCE; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem -Delta u + (V-infinity + V(x))u = vertical bar u vertical bar(p-2) u, u is an element of H-0(1)(Omega), where Omega is an exterior domain in R-N, V-infinity > 0, V is an element of C-0 (R-N), inf(R)(N) V > -V-infinity and V(x) -> 0 as vertical bar x vertical bar -> infinity. Under symmetry conditions on Omega and V. and some assumptions on the decay of V at infinity, we show that there is an effect of the topology of the orbit space of certain subsets of the domain on the number of low energy sign changing solutions to this problem.
引用
收藏
页码:427 / 443
页数:17
相关论文
共 50 条
  • [31] Existence of solutions for a class of fractional elliptic problems on exterior domains
    Alves, Claudianor O.
    Bisci, Giovanni Molica
    Torres Ledesma, Cesar E.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (11) : 7183 - 7219
  • [32] APPROXIMATION OF SOLUTIONS OF ELLIPTIC PROBLEMS IN DOMAINS WITH NONCOMPACT BOUNDARIES BY SOLUTIONS OF EXTERIOR OR INTERIOR PROBLEMS
    SPIRIDONOV, MY
    MATHEMATICS OF THE USSR-SBORNIK, 1984, 125 (3-4): : 551 - 561
  • [33] Sign-changing solutions of nonlinear elliptic equations
    Zhaoli Liu
    Zhi-Qiang Wang
    Frontiers of Mathematics in China, 2008, 3 : 221 - 238
  • [34] Sign-changing solutions of nonlinear elliptic equations
    Liu, Zhaoli
    Wang, Zhi-Qiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2008, 3 (02) : 221 - 238
  • [35] Sign changing solutions to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains
    Musso, Monica
    Pistoia, Angela
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (06): : 510 - 528
  • [36] Sign Changing Solutions for Quasilinear Superlinear Elliptic Problems
    Correa, F. J. S. A.
    Carvalho, M. L. M.
    Goncalves, Jose V. A.
    Silva, E. D.
    QUARTERLY JOURNAL OF MATHEMATICS, 2017, 68 (02): : 391 - 420
  • [37] Sign-changing solutions for some fourth-order nonlinear elliptic problems
    Zhou, Jianwen
    Wu, Xian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) : 542 - 558
  • [38] Multiple solutions for some Neumann problems in exterior domains
    Hsu, Tsing-San
    Lin, Huei-Li
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 73 (03) : 353 - 364
  • [39] On semilinear elliptic problems in exterior domains
    Tzeng, SY
    Wang, HC
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS, 1999, 5 (1-4): : 237 - 250
  • [40] Fast and slow decay solutions for supercritical elliptic problems in exterior domains
    Davila, Juan
    del Pino, Manuel
    Musso, Monica
    Wei, Juncheng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 32 (04) : 453 - 480