ON LOCAL AND GLOBAL RIGIDITY OF QUASI-CONFORMAL ANOSOV DIFFEOMORPHISMS

被引:16
|
作者
Kalinin, Boris [1 ]
Sadovskaya, Victoria [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
rigidity; Anosov systems; conformal structures; smooth conjugacy; SMOOTH CONJUGACY;
D O I
10.1017/S1474748003000161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a transitive uniformly quasi-conformal Anosov diffeomorphism f of a compact manifold M. We prove that if the stable and unstable distributions have dimensions greater than two, then f is C-infinity conjugate to an affine Anosov automorphism of a finite factor of a torus. If the dimensions are at least two, the same conclusion holds under the additional assumption that M is an infranilmanifold. We also describe necessary and sufficient conditions for smoothness of conjugacy between such a diffeomorphism and a small perturbation.
引用
收藏
页码:567 / 582
页数:16
相关论文
共 50 条
  • [31] APPROXIMATION ON THE QUASI-CONFORMAL ARES
    ANDRIEVSKY, VV
    GERMAN, SP
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1980, (10): : 3 - 6
  • [32] On contact quasi-conformal immersions
    Zorich, VA
    RUSSIAN MATHEMATICAL SURVEYS, 2005, 60 (02) : 382 - 383
  • [33] Computing Quasi-Conformal Folds
    Qiu, Di
    Lam, Ka-Chun
    Lui, Lok-Ming
    SIAM JOURNAL ON IMAGING SCIENCES, 2019, 12 (03): : 1392 - 1424
  • [34] LOCAL RIGIDITY FOR ANOSOV AUTOMORPHISMS
    Gogolev, Andrey
    Kalinin, Boris
    Sadovskaya, Victoria
    de la Llave, Rafael
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (05) : 843 - 858
  • [35] EXTREMAL QUASI-CONFORMAL MAPPINGS
    BILUTA, PA
    KRUSHKAL, SL
    DOKLADY AKADEMII NAUK SSSR, 1971, 196 (02): : 259 - &
  • [36] A PROPERTY OF QUASI-CONFORMAL MAPPING
    ROYDEN, HL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 5 (02) : 266 - 269
  • [37] Further rigidity properties of conformal Anosov systems
    De La Llave, R
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 : 1425 - 1441
  • [38] QUASI-CONFORMAL MAPPINGS AND CAPACITY
    IWANIEC, T
    MARTIN, G
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (01) : 101 - 122
  • [39] A PROPERTY OF QUASI-CONFORMAL MAPPINGS
    AGMON, S
    JOURNAL OF RATIONAL MECHANICS AND ANALYSIS, 1954, 3 (06): : 763 - 765
  • [40] AHLFORS,L PROBLEM OF QUASI-CONFORMAL MAPPING EXTENTION AND QUASI-CONFORMAL EQUIVALENCE OF DOMAINS TO SPHERE
    KOPYLOV, AP
    DOKLADY AKADEMII NAUK SSSR, 1976, 230 (05): : 1025 - 1028