Accelerating Brownian motion on N-torus

被引:10
|
作者
Pai, Hui-Ming [1 ]
Hwang, Chii-Ruey [2 ]
机构
[1] Natl Taipei Univ, Dept Stat, San Shia 237, Taiwan
[2] Acad Sinica, Inst Math, Taipei 11529, Taiwan
关键词
Spectral gap; Antisymmetric perturbation; Torus; Convergence rate; Diffusions;
D O I
10.1016/j.spl.2013.02.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
On N-torus, we consider antisymmetric perturbations of Laplacian of the form L-C (=) over dot Delta + C center dot del, where C is a divergence free vector field. The spectral gap, denoted by lambda(C), of L(C) is defined by -sup{real part of mu, mu is in the spectrum of L-C, mu not equal 0}. We characterize for a certain class of C's, the limit of lambda(kC) as k goes to infinity and prove that sup {lambda(C), C is divergence free} = infinity. This problem is motivated by accelerating diffusions. By adding a weighted antisymmetric drift to a reversible diffusion, the convergence to the equilibrium is accelerated using the spectral gap as a comparison criterion. However, how good can the improvement be is yet to be answered. In this paper, we demonstrate that on N-torus the acceleration of Brownian motion could be infinitely fast. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1443 / 1447
页数:5
相关论文
共 50 条
  • [21] Nosé-Thermostated Mechanical Systems on the n-Torus
    Leo T. Butler
    Archive for Rational Mechanics and Analysis, 2018, 227 : 855 - 867
  • [22] DIFFERENTIAL NONSINGULAR FORMS CLOSED ON AN N-TORUS
    SIKORAV, JC
    COMMENTARII MATHEMATICI HELVETICI, 1982, 57 (01) : 79 - 106
  • [23] Slantification of Hankel Operators on Hardy Space of n-torus
    Curto, Raul E.
    Datt, Gopal
    Gupta, Bhawna Bansal
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (04)
  • [24] Ergodic joinings of GL(n, Z)-action on n-torus
    Prikhod'ko A.A.
    Journal of Dynamical and Control Systems, 1999, 5 (3) : 385 - 395
  • [25] Ergodic joinings of GL(n, Z)-action on n-torus
    Prikhod'ko, A.A.
    Journal of Dynamical and Control Systems, 1999, 5 (03): : 385 - 395
  • [26] ATTRACTORS ON AN N-TORUS QUASIPERIODICITY VERSUS CHAOS.
    Grebogi, Celso
    Ott, Edward
    Yorke, James A.
    Physica D: Nonlinear Phenomena, 1985, 15 D (03) : 354 - 373
  • [27] NON SINGULAR CLOSED DIFFERENTIAL FORMS ON THE N-TORUS
    SIKORAV, JC
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 292 (17): : 829 - 832
  • [28] Estimates of correlation decay in auto/endomorphisms of the n-torus
    Brini, F
    Siboni, S
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (6-7) : 941 - 951
  • [29] FOCK SPACE REPRESENTATIONS OF THE ALGEBRA OF DIFFEOMORPHISMS OF THE N-TORUS
    FIGUEIRIDO, F
    RAMOS, E
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (05): : 771 - 806
  • [30] Slantification of Hankel Operators on Hardy Space of n-torus
    Raúl E. Curto
    Gopal Datt
    Bhawna Bansal Gupta
    Complex Analysis and Operator Theory, 2023, 17