Complete Lyapunov functions of control systems

被引:15
|
作者
Souza, Josiney A. [1 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
关键词
Morse decomposition; Chain recurrence; Lyapunov function; SEMIFLOWS;
D O I
10.1016/j.sysconle.2011.11.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the notion of complete Lyapunov function of control systems is introduced. The purpose is to determine a continuous real-valued function that describes the global structure of the system. The existence of complete Lyapunov functions is proved for certain classes of affine control systems on compact manifolds. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:322 / 326
页数:5
相关论文
共 50 条
  • [21] Smooth complete Lyapunov functions for ODEs
    Hafstein, Sigurdur
    Suhr, Stefan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 499 (01)
  • [22] Eigenpairs for the Analysis of Complete Lyapunov Functions
    Argaez, Carlos
    Giesl, Peter
    Hafstein, Sigurdur Freyr
    COMPLEXITY, 2022, 2022
  • [23] SMOOTH COMPLETE LYAPUNOV FUNCTIONS FOR MULTIFUNCTIONS
    Suhr, Stefan
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2022, : 199 - 209
  • [24] Construction of control Lyapunov functions for damping stabilization of control affine systems
    Hudon, N.
    Guay, M.
    SYSTEMS & CONTROL LETTERS, 2013, 62 (11) : 1009 - 1017
  • [25] Construction of Control Lyapunov Functions for Damping Stabilization of Control Affine Systems
    Hudon, N.
    Guay, M.
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 8008 - 8013
  • [26] Nonlinear Model Predictive Control of Robotic Systems with Control Lyapunov Functions
    Grandia, Ruben
    Taylor, Andrew J.
    Singletary, Andrew
    Hutter, Marco
    Ames, Aaron D.
    ROBOTICS: SCIENCE AND SYSTEMS XVI, 2020,
  • [27] HOMOGENEOUS FEEDBACK CONTROL OF NONLINEAR SYSTEMS BASED ON CONTROL LYAPUNOV FUNCTIONS
    Zhang, Junfeng
    Han, Zhengzhi
    Huang, Jun
    ASIAN JOURNAL OF CONTROL, 2014, 16 (04) : 1082 - 1090
  • [28] Path-Complete Lyapunov Functions for Continuous-Time Switching Systems
    Della Rossa, Matteo
    Pasquini, Mirko
    Angeli, David
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 3279 - 3284
  • [29] Control Lyapunov functions for homogeneous "Jurdjevic-Quinn" systems
    Faubourg, L
    Pomet, JB
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2000, 5 : 293 - 311
  • [30] On the stability and control of nonlinear systems via vector Lyapunov functions
    Nersesov, SG
    Haddad, WM
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 4107 - 4112