Injective Colorings with Arithmetic Constraints

被引:0
|
作者
Astromujoff, N. [1 ]
Chapelle, M. [2 ]
Matamala, M. [3 ]
Todinca, I. [2 ]
Zamora, J. [4 ]
机构
[1] Univ Chile, Dept Matemat, Santiago, Chile
[2] Univ Orleans, Lab Informat Fondamentale Orleans, Orleans, France
[3] Univ Chile, Ctr Modelamiento Matemat, Dept Ingn Matemat, UMI CNRS 2807, Santiago, Chile
[4] Univ Andres Bello, Dept Matemat, Santiago, Chile
关键词
Injective colorings; Dynamic programming; NP-completeness; Polynomial time algorithms; CHROMATIC NUMBER; INTEGER SETS; GRAPHS; PROGRESSIONS;
D O I
10.1007/s00373-014-1520-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An injective coloring of a graph is a vertex labeling such that two vertices sharing a common neighbor get different labels. In this work we introduce and study what we call additive colorings. An injective coloring of a graph is an additive coloring if for every in , . The smallest integer such that an injective (resp. additive) coloring of a given graph exists with colors (resp. colors in ) is called the injective (resp. additive) chromatic number (resp. index). They are denoted by and , respectively. In the first part of this work, we present several upper bounds for the additive chromatic index. On the one hand, we prove a super linear upper bound in terms of the injective chromatic number for arbitrary graphs, as well as a linear upper bound for bipartite graphs and trees. Complete graphs are extremal graphs for the super linear bound, while complete balanced bipartite graphs are extremal graphs for the linear bound. On the other hand, we prove a quadratic upper bound in terms of the maximum degree. In the second part, we study the computational complexity of computing . We prove that it can be computed in polynomial time for trees. We also prove that for bounded treewidth graphs, to decide whether , for a fixed , can be done in polynomial time. On the other hand, we show that for cubic graphs it is NP-complete to decide whether . We also prove that for every there is a polynomial time approximation algorithm with approximation factor for , when restricted to split graphs. However, unless , for every there is no polynomial time approximation algorithm with approximation factor for , even when restricted to split graphs.
引用
收藏
页码:2003 / 2017
页数:15
相关论文
共 50 条
  • [41] Reasoning on expressive description logics with arithmetic constraints
    Barcenas, Everardo
    Molero, Guillermo
    Sanchez, Gabriela
    Benitez-Guerrero, Edgard
    Mezura-Godoy, Carmen
    2016 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND COMPUTERS (CONIELECOMP), 2016, : 180 - 185
  • [42] Representing arithmetic constraints with finite automata: An overview
    Boigelot, B
    Wolper, P
    LOGICS PROGRAMMING, PROCEEDINGS, 2002, 2401 : 1 - 19
  • [43] ARITHMETIC EQUALITY CONSTRAINTS AS C++ STATEMENTS
    VANWYK, CJ
    SOFTWARE-PRACTICE & EXPERIENCE, 1992, 22 (06): : 467 - 494
  • [44] Construction of efficient BDDs for bounded arithmetic constraints
    Bartzis, C
    Bultan, T
    TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, PROCEEDINGS, 2003, 2619 : 394 - 408
  • [46] On the construction of automata from linear arithmetic constraints
    Wolper, P
    Boigelot, B
    TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, 2000, 1785 : 1 - 19
  • [47] Semenov Arithmetic, Affine VASS, and String Constraints
    Draghici, Andrei
    Haase, Christoph
    Manea, Florin
    41ST INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, STACS 2024, 2024, 289
  • [48] Mu-Calculus Satisfiability with Arithmetic Constraints
    Limon, Y.
    Barcenas, E.
    Benitez-Guerrero, E.
    Castillo, G. Molero
    Velazquez-Mena, A.
    PROGRAMMING AND COMPUTER SOFTWARE, 2020, 46 (08) : 503 - 510
  • [49] Properly colored subgraphs and rainbow subgraphs in edge-colorings with local constraints
    Alon, N
    Jiang, T
    Miller, Z
    Pritikin, D
    RANDOM STRUCTURES & ALGORITHMS, 2003, 23 (04) : 409 - 433
  • [50] Efficient relational joins with arithmetic constraints on multiple attributes
    Hu, C
    Yang, LY
    Foster, I
    9TH INTERNATIONAL DATABASE ENGINEERING & APPLICATION SYMPOSIUM, PROCEEDINGS, 2005, : 210 - 220