A Flexible Framework for Cubic Regularization Algorithms for Nonconvex Optimization in Function Space

被引:1
|
作者
Schiela, Anton [1 ]
机构
[1] Univ Bayreuth, Math Inst, D-95440 Bayreuth, Germany
关键词
Non-convex optimization; optimization in function space; cubic regularization; GLOBAL CONVERGENCE; TRUST; MINIMIZATION;
D O I
10.1080/01630563.2018.1499114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a cubic regularization algorithm that is constructed to deal with nonconvex minimization problems in function space. It allows for a flexible choice of the regularization term and thus accounts for the fact that in such problems one often has to deal with more than one norm. Global and local convergence results are established in a general framework.
引用
收藏
页码:85 / 118
页数:34
相关论文
共 50 条
  • [41] Three Search Algorithms for Three Nonconvex Optimization Problems
    Gornov A.Y.
    Sorokovikov P.S.
    Zarodnyuk T.S.
    Anikin A.S.
    Journal of Mathematical Sciences, 2022, 267 (4) : 457 - 464
  • [42] Parallel Selective Algorithms for Nonconvex Big Data Optimization
    Facchinei, Francisco
    Scutari, Gesualdo
    Sagratella, Simone
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (07) : 1874 - 1889
  • [43] Stochastic Bigger Subspace Algorithms for Nonconvex Stochastic Optimization
    Yuan, Gonglin
    Zhou, Yingjie
    Wang, Liping
    Yang, Qingyuan
    IEEE ACCESS, 2021, 9 : 119818 - 119829
  • [44] Proximal Denoiser for Convergent Plug-and-Play Optimization with Nonconvex Regularization
    Hurault, Samuel
    Leclaire, Arthur
    Papadakis, Nicolas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [45] IMPROVEMENT AND IMPLEMENTATION OF SOME ALGORITHMS FOR NONCONVEX OPTIMIZATION PROBLEMS
    THIEU, TV
    OPTIMIZATION /, 1989, 1405 : 159 - 170
  • [46] On the use of iterative methods in cubic regularization for unconstrained optimization
    Bianconcini, Tommaso
    Liuzzi, Giampaolo
    Morini, Benedetta
    Sciandrone, Marco
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 60 (01) : 35 - 57
  • [47] On the use of iterative methods in cubic regularization for unconstrained optimization
    Tommaso Bianconcini
    Giampaolo Liuzzi
    Benedetta Morini
    Marco Sciandrone
    Computational Optimization and Applications, 2015, 60 : 35 - 57
  • [48] Efficient Hyper-parameter Optimization with Cubic Regularization
    Shen, Zhenqian
    Yang, Hansi
    Li, Yong
    Kwok, James
    Yao, Quanming
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [49] Local convexification of the Lagrangian function in nonconvex optimization
    Li, D
    Sun, XL
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 104 (01) : 109 - 120
  • [50] Local Convexification of the Lagrangian Function in Nonconvex Optimization
    D. Li
    X. L. Sun
    Journal of Optimization Theory and Applications, 2000, 104 : 109 - 120