A Flexible Framework for Cubic Regularization Algorithms for Nonconvex Optimization in Function Space

被引:1
|
作者
Schiela, Anton [1 ]
机构
[1] Univ Bayreuth, Math Inst, D-95440 Bayreuth, Germany
关键词
Non-convex optimization; optimization in function space; cubic regularization; GLOBAL CONVERGENCE; TRUST; MINIMIZATION;
D O I
10.1080/01630563.2018.1499114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a cubic regularization algorithm that is constructed to deal with nonconvex minimization problems in function space. It allows for a flexible choice of the regularization term and thus accounts for the fact that in such problems one often has to deal with more than one norm. Global and local convergence results are established in a general framework.
引用
收藏
页码:85 / 118
页数:34
相关论文
共 50 条
  • [1] Cubic Regularization with Momentum for Nonconvex Optimization
    Wang, Zhe
    Zhou, Yi
    Liang, Yingbin
    Lan, Guanghui
    35TH UNCERTAINTY IN ARTIFICIAL INTELLIGENCE CONFERENCE (UAI 2019), 2020, 115 : 313 - 322
  • [2] Stochastic Cubic Regularization for Fast Nonconvex Optimization
    Tripuraneni, Nilesh
    Stern, Mitchell
    Jin, Chi
    Regier, Jeffrey
    Jordan, Michael I.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [3] Convergence of Cubic Regularization for Nonconvex Optimization under KL Property
    Zhou, Yi
    Wang, Zhe
    Liang, Yingbin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [4] Stochastic Variance-Reduced Cubic Regularization for Nonconvex Optimization
    Wang, Zhe
    Zhou, Yi
    Liang, Yingbin
    Lan, Guanghui
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [5] ADAPTIVE REGULARIZATION ALGORITHMS WITH INEXACT EVALUATIONS FOR NONCONVEX OPTIMIZATION
    Bellavia, Stefania
    Guriol, Gianmarco
    Morini, Benedetta
    Toint, Philippe L.
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2881 - 2915
  • [6] Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization
    Park, Seonho
    Jung, Seung Hyun
    Pardalos, Panos M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 184 (03) : 953 - 971
  • [7] Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization
    Seonho Park
    Seung Hyun Jung
    Panos M. Pardalos
    Journal of Optimization Theory and Applications, 2020, 184 : 953 - 971
  • [8] An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity
    Cartis, C.
    Gould, N. I. M.
    Toint, Ph. L.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (04) : 1662 - 1695
  • [9] On constrained optimization with nonconvex regularization
    E. G. Birgin
    J. M. Martínez
    A. Ramos
    Numerical Algorithms, 2021, 86 : 1165 - 1188
  • [10] On constrained optimization with nonconvex regularization
    Birgin, E. G.
    Martinez, J. M.
    Ramos, A.
    NUMERICAL ALGORITHMS, 2021, 86 (03) : 1165 - 1188