Structure and propagation of triple flames in partially premixed hydrogen-air mixtures

被引:71
|
作者
Im, IG [1 ]
Chen, JH [1 ]
机构
[1] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA
关键词
D O I
10.1016/s0010-2180(99)00073-5
中图分类号
O414.1 [热力学];
学科分类号
摘要
The characteristics of triple flames in a hydrogen-air mixing layer are studied using direct numerical simulation with detailed chemistry. Triple flames are initiated by imposing a temperature ignition source in the center of a scalar mixing layer of nonuniform thickness, thereby forming a pair of freely propagating triple flames. Two different Fuel streams are studied: pure hydrogen and hydrogen diluted with nitrogen. During the ignition stage, the initial ignition runaway is followed by a secondary peak as the ignition kernel transitions to a triple flame, consistent with previous observations. For both diluted and undiluted cases, the triple flame structure exhibits more similarity with a diffusion flame than with a premixed flame, such that the triple point, defined as the location of maximum heat release, is always in the proximity of the stoichiometric mixture fraction line. Similar to a previous study of methanol-air triple flames, the enhancement in the stabilization speed is attributed mainly to how divergence, and its value is proportional to the square root of the density ratio across the flame. In the undiluted case, however, the asymmetric flame structure results in distinct locations where the stabilization speed and the displacement speed are maximum. The effect of unsteady strain rate is also studied by imposing a pair of vortices on the propagating triple flames. The negative strain rate results in the: collapse of the premixed flame branches onto the diffusion flame, forming an edge flame structure. Excessive compressive strain and curvature at the triple flame tip leads to a negative displacement speed. A mixture fraction/temperature parameterization is shown to be useful in representing the structure of a triple flame subjected to unsteady strain rate, (C) 1999 by The Combustion Institute.
引用
收藏
页码:436 / 454
页数:19
相关论文
共 50 条
  • [31] BOUNDARY LAYER FLASHBACK IN PREMIXED HYDROGEN-AIR FLAMES WITH ACOUSTIC EXCITATION
    Hoferichter, Vera
    Sattelmayer, Thomas
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 4A, 2017,
  • [32] INTERNAL STRUCTURE OF HYDROGEN-AIR DIFFUSION FLAMES
    DARIVA, I
    ASTRONAUTICA ACTA, 1966, 12 (04): : 284 - &
  • [33] Laminar burning velocity of hydrogen-air premixed flames at elevated pressure
    Qin, X
    Kobayashi, H
    Niioka, T
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2000, 21 (1-3) : 58 - 63
  • [34] Boundary Layer Flashback in Premixed Hydrogen-Air Flames With Acoustic Excitation
    Hoferichter, Vera
    Sattelmayer, Thomas
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2018, 140 (05):
  • [35] Stretch of hydrogen-air outwardly propagating spherical laminar premixed flames
    Bao, Xiu-Chao
    Liu, Fu-Shui
    Liu, Xing-Hua
    Ranshao Kexue Yu Jishu/Journal of Combustion Science and Technology, 2011, 17 (03): : 237 - 242
  • [36] DYNAMICS OF PREMIXED HYDROGEN-AIR FLAMES IN MICROCHANNELS WITH A WALL TEMPERATURE GRADIENT
    Nair, Aswathy
    Kishore, V. Ratna
    Kumar, Sudarshan
    COMBUSTION SCIENCE AND TECHNOLOGY, 2015, 187 (10) : 1620 - 1637
  • [37] The effect of Soret diffusion on stability of rich premixed hydrogen-air flames
    Korsakova, A. I.
    Gubernov, V. V.
    Bykov, V.
    Maas, U.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (39) : 17670 - 17675
  • [38] The Soret effect in naturally propagating, premixed, lean, hydrogen-air flames
    Grcar, Joseph F.
    Bell, John B.
    Day, Marcus S.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2009, 32 : 1173 - 1180
  • [39] INTERACTION OF FLAME FLASHBACK MECHANISMS IN PREMIXED HYDROGEN-AIR SWIRL FLAMES
    Sattelmayer, Thomas
    Mayer, Christoph
    Sangl, Janine
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2014, VOL 4A, 2014,
  • [40] Flame propagation characteristics of non-uniform premixed hydrogen-air mixtures explosion in a pipeline
    Qu, Jiao
    Zhao, Huali
    Zhao, Lingchen
    Luo, Zhen-Min
    Wang, Tao
    Deng, Jun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 88 : 462 - 476