A Stacked Deep Learning Approach for IoT Cyberattack Detection

被引:23
|
作者
Alotaibi, Bandar [1 ]
Alotaibi, Munif [2 ]
机构
[1] Univ Tabuk, Dept Informat Technol, Tabuk, Saudi Arabia
[2] Shaqra Univ, Dept Comp Sci, Shaqra, Saudi Arabia
关键词
INTRUSION DETECTION SYSTEM; INTERNET; SECURE;
D O I
10.1155/2020/8828591
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Internet of things (IoT) devices and applications are dramatically increasing worldwide, resulting in more cybersecurity challenges. Among these challenges are malicious activities that target IoT devices and cause serious damage, such as data leakage, phishing and spamming campaigns, distributed denial-of-service (DDoS) attacks, and security breaches. In this paper, a stacked deep learning method is proposed to detect malicious traffic data, particularly malicious attacks targeting IoT devices. The proposed stacked deep learning method is bundled with five pretrained residual networks (ResNets) to deeply learn the characteristics of the suspicious activities and distinguish them from normal traffic. Each pretrained ResNet model consists of 10 residual blocks. We used two large datasets to evaluate the performance of our detection method. We investigated two heterogeneous IoT environments to make our approach deployable in any IoT setting. Our proposed method has the ability to distinguish between benign and malicious traffic data and detect most IoT attacks. The experimental results show that our proposed stacked deep learning method can provide a higher detection rate in real time compared with existing classification techniques.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Fusion of deep learning based cyberattack detection and classification model for intelligent systems
    Omar A. Alzubi
    Issa Qiqieh
    Jafar A. Alzubi
    Cluster Computing, 2023, 26 : 1363 - 1374
  • [42] A New Deep Learning Approach Enhanced with Ensemble Learning for Accurate Intrusion Detection in IOT Networks
    Jothi, K. R.
    Jain, Mehul
    Jain, Ankit
    Amali, D. Geraldine Bessie
    Manoj, S. Oswalt
    AD HOC & SENSOR WIRELESS NETWORKS, 2022, 54 (1-2) : 1 - 20
  • [43] Deep Learning-Based Framework for the Detection of Cyberattack Using Feature Engineering
    Akhtar, Muhammad Shoaib
    Feng, Tao
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [44] Detection of IoT Botnet Based on Deep Learning
    Liu, Junyi
    Liu, Shiyue
    Zhang, Sihua
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 8381 - 8385
  • [45] IoT Attack Detection with Deep Learning Analysis
    Pecori, Riccardo
    Tayebi, Amin
    Vannucci, Armando
    Veltri, Luca
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [46] Deep learning for intrusion detection in IoT networks
    Selem, Mehdi
    Jemili, Farah
    Korbaa, Ouajdi
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2025, 18 (02)
  • [47] Deep Transfer Learning for IoT Attack Detection
    Vu, Ly
    Quang Uy Nguyen
    Nguyen, Diep N.
    Dinh Thai Hoang
    Dutkiewicz, Eryk
    IEEE ACCESS, 2020, 8 : 107335 - 107344
  • [48] Intrusion Detection in IoT Using Deep Learning
    Banaamah, Alaa Mohammed
    Ahmad, Iftikhar
    SENSORS, 2022, 22 (21)
  • [49] IoT botnet detection using deep learning
    Rabhi, Sana
    Abbes, Tarek
    Zarai, Faouzi
    2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 1107 - 1111
  • [50] A Deep Learning-Based Cyberattack Detection System for Transmission Protective Relays
    Khaw, Yew Meng
    Jahromi, Amir Abiri
    Arani, Mohammadreza F. M.
    Sanner, Scott
    Kundur, Deepa
    Kassouf, Marthe
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (03) : 2554 - 2565