One-dimensional interacting electrons beyond the Dzyaloshinskii-Larkin theorem

被引:2
|
作者
Teber, S. [1 ]
机构
[1] Univ Paris 06, Lab Phys Theor & Hautes Energies, F-75005 Paris, France
来源
PHYSICAL REVIEW B | 2012年 / 86卷 / 19期
关键词
MANY-FERMION SYSTEM; LUTTINGER LIQUID; FIELD; MODEL;
D O I
10.1103/PhysRevB.86.195112
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider one-dimensional (1D) interacting electrons beyond the Dzyaloshinskii-Larkin theorem, i.e., keeping forward-scattering interactions among the electrons but adding a nonlinear correction to the electron dispersion relation. The latter generates multiloop corrections to the polarization operator and electron self-energy, thereby providing a variety of inelastic processes affecting equilibrium as well as nonequilibrium properties of the 1D system. We first review the computation of equilibrium properties, e.g., the high-frequency part of the dynamical structure factor and corrections to the electron-electron scattering rate. On this basis, microscopic equilibration processes are identified and a qualitative estimate of the relaxation rate of thermal carriers is given.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] A THEORY OF A ONE-DIMENSIONAL SYSTEM OF INTERACTING ELECTRONS IN A 2KF-PERIODIC POTENTIAL
    SUGIYAMA, T
    KUMAGAI, J
    OKAMOTO, K
    PROGRESS OF THEORETICAL PHYSICS, 1984, 71 (04): : 677 - 688
  • [32] Two interacting electrons in a one-dimensional parabolic quantum dot: exact numerical diagonalization
    Ciftja, O
    Faruk, MG
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (09) : 2623 - 2633
  • [33] CONDUCTIVITY OF ONE-DIMENSIONAL INTERACTING FERMIONS
    MATTIS, DC
    PHYSICAL REVIEW LETTERS, 1974, 32 (13) : 714 - 717
  • [34] One-dimensional interacting topological insulator
    Guo, Huaiming
    Shen, Shun-Qing
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2013, 63 (03) : 387 - 389
  • [35] One-dimensional interacting topological insulator
    Huaiming Guo
    Shun-Qing Shen
    Journal of the Korean Physical Society, 2013, 63 : 387 - 389
  • [36] Noninteracting electrons in one-dimensional systems
    Gantmakher, VF
    LOW TEMPERATURE PHYSICS, 2005, 31 (3-4) : 331 - 337
  • [37] ONE-DIMENSIONAL BALLISTIC TRANSPORT OF ELECTRONS
    STEVENS, KWH
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (34): : 5791 - 5808
  • [38] One-dimensional steeplechase for electrons realized
    Björk, MT
    Ohlsson, BJ
    Sass, T
    Persson, AI
    Thelander, C
    Magnusson, MH
    Deppert, K
    Wallenberg, LR
    Samuelson, L
    NANO LETTERS, 2002, 2 (02) : 87 - 89
  • [39] ONE-DIMENSIONAL BALLISTIC TRANSPORT OF ELECTRONS
    PEPPER, M
    SMITH, CG
    BROWN, RJ
    WHARAM, DA
    KELLY, MJ
    NEWBURY, R
    AHMED, H
    HASKO, DG
    PEACOCK, DC
    FROST, JEF
    RITCHIE, DA
    JONES, GAC
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1990, 5 (12) : 1185 - 1188
  • [40] On the Ehrenfest theorem in a one-dimensional box
    Alonso, V
    De Vincenzo, S
    González-Díaz, LA
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2000, 115 (02): : 155 - 164