Sparse approximation based on wavelet kernel support vector machines

被引:0
|
作者
Yang, DK [1 ]
Tong, YB [1 ]
Zhang, QS [1 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100083, Peoples R China
关键词
wavelet kernel function; support vector machine; sparse approximation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel support vector machines, which can converge to minimum error with better sparsity. The results obtained by our simulation experiment show the feasibility and validity of wavelet kernel support vector machines.
引用
收藏
页码:4249 / 4253
页数:5
相关论文
共 50 条
  • [41] A multiresolution wavelet kernel for support vector regression
    Han, Feng-Qing
    Wang, Da-Cheng
    Li, Chuan-Dong
    Liao, Xiao-Feng
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 1022 - 1029
  • [42] Sparse pinball twin support vector machines
    Tanveer, M.
    Tiwari, Aruna
    Choudhary, Rahul
    Jalan, Sanchit
    APPLIED SOFT COMPUTING, 2019, 78 : 164 - 175
  • [43] Sparse representations and performances in Support Vector Machines
    Ancona, N
    Maglietta, R
    Stella, E
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA'04), 2004, : 129 - 136
  • [44] Sparse deconvolution using support vector machines
    Rojo-Alvarez, Jose Luis
    Martinez-Ramon, Manel
    Munoz-Mari, Jordi
    Camps-Valls, Gustavo
    Cruz, Carlos M.
    Figueiras-Vidal, Anibal R.
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2008, 2008 (1)
  • [45] SPARSE POSTERIOR PROBABILITY SUPPORT VECTOR MACHINES
    Wang, Dongli
    Zhou, Yan
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 396 - 399
  • [46] Sparse Deconvolution Using Support Vector Machines
    JoséLuis Rojo-Álvarez
    Manel Martínez-Ramón
    Jordi Muñoz-Marí
    Gustavo Camps-Valls
    Carlos M. Cruz
    Aníbal R. Figueiras-Vidal
    EURASIP Journal on Advances in Signal Processing, 2008
  • [47] Robust support vector machines and their sparse algorithms
    An Y.
    Zhou S.
    Chen L.
    Wang B.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (01): : 64 - 72
  • [48] Classification Of Diabetes Patients Using Kernel Based Support Vector Machines
    Pethunachiyar, G. A.
    2020 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI - 2020), 2020, : 156 - +
  • [49] Model Selection for Support Vector Machines Based on Kernel Density Estimation
    Jin, Zhu
    Ma, Xiaoping
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 1161 - 1165
  • [50] Granular Twin Support Vector Machines Based on Mixture Kernel Function
    Wei, Xiuxi
    Huang, Huajuan
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, ICIC 2015, PT III, 2015, 9227 : 43 - 54