Matter wave soliton solutions of the cubic-quintic nonlinear Schrodinger equation with an anharmonic potential

被引:3
|
作者
Liu, Yifang [1 ]
Li, Guo-Rong [2 ]
机构
[1] Cent Univ Finance & Econ, Sch Econ, Beijing 100081, Peoples R China
[2] Dalian Med Univ, Dept Hlth Stat, Coll Publ Hlth, Dalian 116044, Peoples R China
基金
中国国家自然科学基金;
关键词
Cubic and quintic nonlinearities; Anharmonic potential; Similarity transformation; Localized stationary solution; Matter wave soliton; Linear stability; EXTENDED TANH METHOD;
D O I
10.1016/j.amc.2012.10.110
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the cubic-quintic nonlinear Schrodinger equation with an anharmonic potential is studied both analytically and numerically. As a result, two families of matter wave soliton solutions are obtained and their stability is analyzed by linear stability analysis and dynamical evolutions. It is shown that the spatially inhomogeneous cubic-quintic nonlinearities and the anharmonic potential can support stable matter wave solitons. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4847 / 4852
页数:6
相关论文
共 50 条
  • [31] Jacobian elliptic function solutions of the discrete cubic-quintic nonlinear Schrodinger equation
    Tiofack, G. C. Latchio
    Mohamadou, Alidou
    Kofane, T. C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (23) : 6133 - 6145
  • [32] New Exact Solutions for High Dispersive Cubic-Quintic Nonlinear Schrodinger Equation
    Xie, Yongan
    Tang, Shengqiang
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [33] Criteria for existence and stability of soliton solutions of the cubic-quintic nonlinear Schroedinger equation
    Schürmann, H.W.
    Serov, V.S.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62 (2 B): : 2821 - 2826
  • [34] New exact solutions to the high dispersive cubic-quintic nonlinear Schrodinger equation
    Xie, Yingying
    Yang, Zhaoyu
    Li, Lingfei
    PHYSICS LETTERS A, 2018, 382 (36) : 2506 - 2514
  • [35] Rogue wave solutions for the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics
    Zhang, Yan
    Nie, Xian-Jia
    Zhaqilao
    PHYSICS LETTERS A, 2014, 378 (03) : 191 - 197
  • [36] Optical solitary wave solutions for the fourth-order dispersive cubic-quintic nonlinear Schrodinger equation
    Dai, Chao-Qing
    Chen, Jun-Lang
    Zhang, Jie-Fang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (15): : 2657 - 2668
  • [37] Analytical dark solitary wave solutions for the higher order nonlinear Schrodinger equation with cubic-quintic terms
    Hong, WP
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2000, 55 (3-4): : 397 - 400
  • [38] On the existence of dark solitons in a cubic-quintic nonlinear Schrodinger equation with a periodic potential
    Torres, Pedro J.
    Konotop, Vladimir V.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (01) : 1 - 9
  • [39] Analytical spatiotemporal soliton solutions to (3+1)-dimensional cubic-quintic nonlinear Schrodinger equation with distributed coefficients
    Kumar, Hitender
    Malik, Anand
    Chand, Fakir
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (10)
  • [40] Dynamics of cubic-quintic nonlinear Schrodinger equation with different parameters
    Hua, Wei
    Liu, Xue-Shen
    Liu, Shi-Xing
    CHINESE PHYSICS B, 2016, 25 (05)