On the gonality sequence of smooth curves

被引:2
|
作者
Ballico, Edoardo [1 ]
机构
[1] Univ Trento, Dept Math, I-38123 Povo, TN, Italy
关键词
Gonality sequence; Smooth curve; Nodal curve;
D O I
10.1007/s00013-012-0409-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a smooth curve of genus g. For each positive integer r the r-gonality d (r) (C) of C is the minimal integer t such that there is with h (0)(C, L) = r + 1. Here we use nodal plane curves to construct several smooth curves C with d (2)(C)/2 < d (3)(C)/3, i.e., for which a slope inequality fails.
引用
收藏
页码:25 / 31
页数:7
相关论文
共 50 条
  • [41] The extremal secant conjecture for curves of arbitrary gonality
    Kemeny, Michael
    COMPOSITIO MATHEMATICA, 2017, 153 (02) : 347 - 357
  • [42] On gonality and canonical models of unicuspidal rational curves
    Naamã Galdino
    Renato Vidal Martins
    Danielle Nicolau
    Semigroup Forum, 2023, 107 : 79 - 108
  • [43] GONALITY AND CLIFFORD INDEX OF PROJECTIVE CURVES ON RULED SURFACES
    Choi, Youngook
    Kim, Seonja
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (02) : 393 - 402
  • [44] POINT COUNTING ON CURVES USING A GONALITY PRESERVING LIFT
    Castryck, Wouter
    Tuitman, Jan
    QUARTERLY JOURNAL OF MATHEMATICS, 2018, 69 (01): : 33 - 74
  • [45] REAL CURVES WITH FIXED GONALITY AND EMPTY REAL LOCUS
    Ballico, Edoardo
    MATEMATICHE, 2005, 60 (01): : 129 - 131
  • [46] Characterizing gonality for two-component stable curves
    Coelho, Juliana
    Sercio, Frederico
    GEOMETRIAE DEDICATA, 2021, 214 (01) : 157 - 176
  • [47] Gonality of non-Gorenstein curves of genus five
    Feital, Lia
    Martins, Renato Vidal
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (04): : 649 - 670
  • [48] The gonality conjecture on syzygies of algebraic curves of large degree
    Lawrence Ein
    Robert Lazarsfeld
    Publications mathématiques de l'IHÉS, 2015, 122 : 301 - 313
  • [49] The gonality and the Clifford index of curves on an elliptic ruled surface
    Takeshi Harui
    Archiv der Mathematik, 2005, 84 : 131 - 147
  • [50] Gonality of non-Gorenstein curves of genus five
    Lia Feital
    Renato Vidal Martins
    Bulletin of the Brazilian Mathematical Society, New Series, 2014, 45 : 649 - 670