Nonlinear optics of periodic and quasiperiodic structure

被引:0
|
作者
Gupta, SD [1 ]
机构
[1] Univ Hyderabad, Sch Phys, Hyderabad 500046, Andhra Pradesh, India
来源
CURRENT SCIENCE | 1999年 / 76卷 / 10期
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Periodic and quasiperiodic structures are known to possess some very special properties. Recent technological breakthrough in poling techniques in nonlinear materials has rendered nonlinear variants of such structures realizable. We review some of the latest developments in nonlinear optics of these systems. We show that the use of such structures leads to several major advantages like lowering of threshold, increase in efficiency of nonlinear mixing, fabrication of media with better characteristics, etc.
引用
收藏
页码:1317 / 1323
页数:7
相关论文
共 50 条
  • [21] Periodic reflecting function of a nonlinear quasiperiodic differential system with a two-frequency basis
    M. S. Belokurskii
    A. K. Demenchuk
    Differential Equations, 2013, 49 : 1323 - 1327
  • [22] Periodic transmission and control of pulses in solid mechanics and nonlinear optics
    Liu, Yiming
    Xiong, Ziming
    Wang, Derong
    Lu, Hao
    Huang, Mu
    Ma, Chao
    Li, Zhihao
    OPTIK, 2019, 198
  • [23] Nonlinear optics in high refractive index contrast periodic structures
    Cowan, AR
    Young, JF
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (09) : R41 - R56
  • [24] LOCALIZATION PROBLEM IN OPTICS - NONLINEAR QUASI-PERIODIC MEDIA
    GUPTA, SD
    RAY, DS
    PHYSICAL REVIEW B, 1990, 41 (12): : 8047 - 8053
  • [26] Periodic features in the dynamic structure factor of the quasiperiodic period-doubling lattice
    Ghosh, A
    Karmakar, SN
    PHYSICAL REVIEW B, 1998, 57 (05) : 2834 - 2840
  • [27] Intermediate quasiperiodic-periodic structures
    Ben-Abraham, S. I.
    Quandt, Alexander
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2006, 62 : S199 - S199
  • [28] Soliton complexity in the damped-driven nonlinear Schrodinger equation: Stationary to periodic to quasiperiodic complexes
    Barashenkov, I. V.
    Zemlyanaya, E. V.
    PHYSICAL REVIEW E, 2011, 83 (05):
  • [29] LINEAR FLUCTUATIONS OF PERIODIC AND QUASIPERIODIC INSTANTONS
    CHAKRABARTI, A
    PHYSICAL REVIEW D, 1989, 40 (08): : 2684 - 2691
  • [30] Periodic translation operators and quasiperiodic curves
    Afanas'ev, AP
    Dzyuba, SM
    DIFFERENTIAL EQUATIONS, 2004, 40 (10) : 1367 - 1372