ESTIMATION OF LIQUIDUS TEMPERATURES OF STEEL USING ARTIFICIAL NEURAL NETWORK APPROACH

被引:0
|
作者
Machu, Mario [1 ,2 ]
Drozdova, Lubomira [1 ,2 ]
Smetana, Bedrich [1 ,2 ]
Zimny, Ondrej [1 ]
Vlcek, Jozef [1 ,2 ]
机构
[1] VSB Tech Univ Ostrava, Ostrava, Czech Republic
[2] VSB Tech Univ Ostrava, Reg Mat Sci & Technol Ctr, Ostrava, Czech Republic
关键词
Artificial neural networks; liquidus temperature of steel; MATLAB; Thermo-Calc; IDS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Presented works investigates a possibility of using modeling based on artificial neural network for prediction of liquidus temperatures of low-alloyed steels. Paper describes the methodology of creating such model by tools incorporated in commercial software MATLAB. Neural network is trained, validated and tested and previously unseen data measured by DTA method are used as new input data. Results are then compared to those measured and calculated by commonly used software for such applications like IDS and Thermo-Calc. Performance of these three modeling approaches is discussed.
引用
收藏
页码:56 / 62
页数:7
相关论文
共 50 条
  • [21] Rainfall estimation using artificial neural network group
    Zhang, M
    Fulcher, J
    Scofield, RA
    NEUROCOMPUTING, 1997, 16 (02) : 97 - 115
  • [22] An artificial neural network approach for cost estimation of engineering services
    Matel, Erik
    Vahdatikhaki, Faridaddin
    Hosseinyalamdary, Siavash
    Evers, Thijs
    Voordijk, Hans
    INTERNATIONAL JOURNAL OF CONSTRUCTION MANAGEMENT, 2022, 22 (07) : 1274 - 1287
  • [23] Estimation of evapotranspiration using neural network approach
    Khedkar, D. D.
    Singh, P. K.
    Bhakar, S. R.
    JOURNAL OF AGROMETEOROLOGY, 2019, 21 (02): : 233 - 235
  • [24] TEMPERATURES OF SOLIDUS AND LIQUIDUS OF TOOL STEEL
    Smetana, Bedrich
    Zla, Simona
    Kawulokova, Monika
    Karel, Gryc
    Strouhalova, Michaela
    Kalup, Ales
    Tkadleckova, Marketa
    Dobrovska, Jana
    Michalek, Karel
    Jonsta, Petr
    Susovsky, Michal
    Dostal, Petr
    Martinik, Ondrej
    Drozdova, L'ubomira
    METAL 2016: 25TH ANNIVERSARY INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS, 2016, : 91 - 96
  • [25] Polymetallic Nodules Abundance Estimation using Sidescan Sonar: A Quantitative Approach using Artificial Neural Network
    Jie, Wong Liang
    Kalyan, Bharath
    Chitre, Mandar
    Vishnu, Hari
    OCEANS 2017 - ABERDEEN, 2017,
  • [26] Estimation of liquidus temperatures in silicate glasses
    Karlsson, KH
    Backman, R
    Cable, M
    Peelen, J
    Hermans, J
    GLASS SCIENCE AND TECHNOLOGY-GLASTECHNISCHE BERICHTE, 2001, 74 (07): : 187 - 191
  • [27] PREDICTION OF TRIBOLOGICAL BEHAVIOR OF TIN COATED HOT WORK STEEL AT HIGH TEMPERATURES USING ARTIFICIAL NEURAL NETWORK
    Tasdelen, M. E.
    Dagasan, E.
    Gercekcioglu, E.
    JOURNAL OF THE BALKAN TRIBOLOGICAL ASSOCIATION, 2016, 22 (2A): : 1808 - 1820
  • [28] Distribution System State Estimation Using an Artificial Neural Network Approach for Pseudo Measurement Modeling
    Manitsas, Efthymios
    Singh, Ravindra
    Pal, Bikash C.
    Strbac, Goran
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (04) : 1888 - 1896
  • [29] Detection of corrosion on steel structures using an artificial neural network
    Khayatazad, Mojtaba
    Honhon, Matthias
    De Waele, Wim
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2023, 19 (12) : 1860 - 1871
  • [30] Adaptive Parameter Estimation of the Generalized Extreme Value Distribution Using Artificial Neural Network Approach
    Phoophiwfa, Tossapol
    Laosuwan, Teerawong
    Volodin, Andrei
    Papukdee, Nipada
    Suraphee, Sujitta
    Busababodhin, Piyapatr
    ATMOSPHERE, 2023, 14 (08)