A New Coefficient of the Conjugate Gradient Method with the Sufficient Descent Condition and Global Convergence Properties

被引:0
|
作者
Malik, Maulana [1 ,2 ]
Mamat, Mustafa [1 ]
Abas, Siti Sabariah [1 ]
Sulaiman, Ibrahim Mohammed [1 ]
Sukono [3 ]
机构
[1] Univ Sultan Zainal Abidin, Fac Informat & Comp, Terengganu, Malaysia
[2] Univ Indonesia, Dept Math, Depok, Indonesia
[3] Univ Padjadjaran, Dept Math, Sumedang, Indonesia
关键词
Conjugate gradient method; unconstrained minimization problem; sufficient descent condition; global convergence; exact line search; strong Wolfe line search; NONLINEAR EQUATIONS; ALGORITHM;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Conjugate gradient methods are the most famous methods for solving unconstrained, large-scale optimization. In this article, we propose a new coefficient of the conjugate gradient method for solving unconstrained minimization problems. The new method is a modification of NPRP (2009) coefficient. The sufficient descent condition and global convergence of the new method are given under the exact line search and the strong Wolfe line search with sigma is an element of (0, 1/8). The numerical results show that the new method has good performance in solving unconstrained minimization problems.
引用
收藏
页码:704 / 714
页数:11
相关论文
共 50 条
  • [31] An Accelerated Three-Term Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition
    XiaoLiang Dong
    Deren Han
    Zhifeng Dai
    Lixiang Li
    Jianguang Zhu
    Journal of Optimization Theory and Applications, 2018, 179 : 944 - 961
  • [32] An Adaptive Three-Term Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition
    Xiao-Liang Dong
    Zhi-Feng Dai
    Reza Ghanbari
    Xiang-Li Li
    Journal of the Operations Research Society of China, 2021, 9 : 411 - 425
  • [33] An Accelerated Three-Term Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition
    Dong, XiaoLiang
    Han, Deren
    Dai, Zhifeng
    Li, Lixiang
    Zhu, Jianguang
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 179 (03) : 944 - 961
  • [34] A modified Hestenes-Stiefel conjugate gradient method with sufficient descent condition and conjugacy condition
    Dong, Xiao Liang
    Liu, Hong Wei
    He, Yu Bo
    Yang, Xi Mei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 281 : 239 - 249
  • [35] A New Sufficient Descent Conjugate Gradient Method with Exact Line Search
    Idalisa, Nur
    Rivaie, Mohd
    Fadhilah, Nurul Hafawati
    Nasir, Mohd Agos Salim
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH 2018): INNOVATIVE TECHNOLOGIES FOR MATHEMATICS & MATHEMATICS FOR TECHNOLOGICAL INNOVATION, 2019, 2184
  • [36] Sufficient descent nonlinear conjugate gradient methods with conjugacy condition
    Cheng, Wanyou
    Liu, Qunfeng
    NUMERICAL ALGORITHMS, 2010, 53 (01) : 113 - 131
  • [37] On the Strong Convergence of a Sufficient Descent Polak-Ribiere-Polyak Conjugate Gradient Method
    Sun, Min
    Liu, Jing
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [38] A New Modified Three-Term Hestenes-Stiefel Conjugate Gradient Method with Sufficient Descent Property and Its Global Convergence
    Baluch, Bakhtawar
    Salleh, Zabidin
    Alhawarat, Ahmad
    JOURNAL OF OPTIMIZATION, 2018, 2018
  • [39] Sufficient descent nonlinear conjugate gradient methods with conjugacy condition
    Wanyou Cheng
    Qunfeng Liu
    Numerical Algorithms, 2010, 53 : 113 - 131
  • [40] A new general form of conjugate gradient methods with guaranteed descent and strong global convergence properties
    Zhang, Yang
    Wang, Kairong
    NUMERICAL ALGORITHMS, 2012, 60 (01) : 135 - 152