A robust numerical method for a two-parameter singularly perturbed time delay parabolic problem

被引:29
|
作者
Sumit [1 ]
Kumar, Sunil [1 ]
Kuldeep [1 ]
Kumar, Mukesh [2 ]
机构
[1] Indian Inst Technol BHU Varanasi, Dept Math Sci, Varanasi, Uttar Pradesh, India
[2] Coll Charleston, Dept Math, Charleston, SC 29424 USA
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2020年 / 39卷 / 03期
关键词
Singular perturbation; Delay differential equation; Shishkin mesh; Hybrid scheme; Uniform convergence; FINITE-DIFFERENCE SCHEME; BOUNDARY-VALUE-PROBLEMS; DIFFUSION PROBLEMS; EQUATIONS;
D O I
10.1007/s40314-020-01236-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider a class of singularly perturbed two-parameter parabolic partial differential equations with time delay on a rectangular domain. The solution bounds are derived by asymptotic analysis of the problem. We construct a numerical method using a hybrid monotone finite difference scheme on a rectangular mesh which is a product of uniform mesh in time and a layer-adapted Shishkin mesh in space. The error analysis is given for the proposed numerical method using truncation error and barrier function approach, and it is shown to be almost second- and first-order convergent in space and time variables, respectively, independent of both the perturbation parameters. At the end, we present some numerical results in support of the theory.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations
    Ansari, A. R.
    Bakr, S. A.
    Shishkin, G. I.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) : 552 - 566
  • [42] Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data
    Chandru, M.
    Das, P.
    Ramos, H.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (14) : 5359 - 5387
  • [43] Variational Iteration Method For Solving Two-Parameter Singularly Perturbed Two Point Boundary Value Problem
    Alquran, Marwan Taiseer
    Dogan, Nurettin
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2010, 5 (01): : 81 - 95
  • [44] PARAMETER-UNIFORM FINITE ELEMENT METHOD FOR TWO-PARAMETER SINGULARLY PERTURBED PARABOLIC REACTION-DIFFUSION PROBLEMS
    Kadalbajoo, M. K.
    Yadaw, Arjun Singh
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2012, 9 (04)
  • [45] Numerical Analysis for a Singularly Perturbed Parabolic Differential Equation with a Time Delay
    Tesfaye, Sisay Ketema
    Dinka, Tekle Gemechu
    Woldaregay, Mesfin Mekuria
    Duressa, Gemechis File
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (03) : 537 - 554
  • [46] NUMERICAL METHOD FOR SINGULARLY PERTURBED DELAY PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS
    Wang, Yulan
    Tian, Dan
    Li, Zhiyuan
    THERMAL SCIENCE, 2017, 21 (04): : 1595 - 1599
  • [47] An adaptive grid method for a two-parameter singularly perturbed problem with non-smooth data
    Liu, Li-Bin
    Xu, Lei
    Xu, Yinuo
    Huang, Zaitang
    APPLIED MATHEMATICS LETTERS, 2024, 157
  • [48] NUMERICAL TREATMENT OF SINGULARLY PERTURBED FOURTH-ORDER TWO-PARAMETER PROBLEMS
    Brdar, Mirjana
    Franz, Sebastian
    Roos, Hans-Gorg
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2019, 51 : 50 - 62
  • [49] A fitted parameter convergent finite difference scheme for two-parameter singularly perturbed parabolic differential equations
    Mohye, Mekashaw Ali
    Munyakazi, Justin B.
    Dinka, Tekle Gemechu
    TAMKANG JOURNAL OF MATHEMATICS, 2025, 56 (01): : 73 - 91
  • [50] Parameter-Robust Numerical Scheme for Time-Dependent Singularly Perturbed Reaction-Diffusion Problem with Large Delay
    Bansal, Komal
    Sharma, Kapil K.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (02) : 127 - 154