A Genetic Algorithm and Cell Mapping Hybrid Method for Multi-objective Optimization Problems

被引:0
|
作者
Naranjani, Yousef [1 ]
Sardahi, Yousef [1 ]
Sun, J. Q. [1 ]
机构
[1] Univ Calif, Sch Engn, Merced, CA 95343 USA
关键词
SEARCH; DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a hybrid multi-objective optimization (MOO) algorithm consisting of an integration of the genetic algorithm (GA) and the simple cell mapping (SCM) is proposed. The GA converges quickly toward a solution neighborhood, but it takes a considerable amount of time to converge to the Pareto set. The SCM can find the global solution because it sweeps the whole space of interest. However, the computational effort grows exponentially with the dimension of the design space. In the hybrid algorithm, the GA is used initially to find a rough solution for the multi-objective optimization problem (MOP). Then, the SCM method takes over to find the non-dominated solutions in each region returned by the GA. It should be pointed out that one point near or on the Pareto set is enough for the SCM to recover the rest of the solution in the region. For comparison purpose, the hybrid algorithm, the GA and SCM methods are applied to solve some of benchmark problems with the Hausdorff distance, number of function evaluations and CPU time as performance metrics. The results show that the hybrid algorithm outperforms other methods with a modest computational time increase. Although the hybrid algorithm does not guarantee finding the global solution, it has much improved chance as demonstrated by one of the benchmark problems.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] A genetic algorithm for unconstrained multi-objective optimization
    Long, Qiang
    Wu, Changzhi
    Huang, Tingwen
    Wang, Xiangyu
    SWARM AND EVOLUTIONARY COMPUTATION, 2015, 22 : 1 - 14
  • [42] Genetic algorithm for multi-objective experimental optimization
    Link, Hannes
    Weuster-Botz, Dirk
    BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2006, 29 (5-6) : 385 - 390
  • [43] A Parallel Genetic Algorithm in Multi-objective Optimization
    Wang Zhi-xin
    Ju Gang
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 3497 - 3501
  • [44] Genetic algorithm for multi-objective experimental optimization
    Hannes Link
    Dirk Weuster-Botz
    Bioprocess and Biosystems Engineering, 2006, 29 : 385 - 390
  • [45] An improved genetic algorithm for multi-objective optimization
    Lin, F
    He, GM
    PDCAT 2005: Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies, Proceedings, 2005, : 938 - 940
  • [46] Multi-objective optimization with improved genetic algorithm
    Ishibashi, H
    Aguirre, HE
    Tanaka, K
    Sugimura, T
    SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 3852 - 3857
  • [47] Gradient-based hybrid method for multi-objective optimization problems
    Yang, Dewei
    Fan, Qinwei
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 272
  • [48] An improved genetic algorithm for multi-objective optimization
    Chen, GL
    Guo, WZ
    Tu, XZ
    Chen, HW
    Progress in Intelligence Computation & Applications, 2005, : 204 - 210
  • [49] Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems
    Zouache, Djaafar
    Arby, Yahya Quid
    Nouioua, Farid
    Ben Abdelaziz, Fouad
    COMPUTERS & INDUSTRIAL ENGINEERING, 2019, 129 : 377 - 391
  • [50] Multi-objective optimization of method of characteristics parameters based on genetic algorithm
    Song, Qufei
    Zhang, Chang
    Wu, Yiwei
    Feng, Kuaiyuan
    Guo, Hui
    Gu, Hanyang
    ANNALS OF NUCLEAR ENERGY, 2023, 194