Dynamics of random replicators with Hebbian interactions

被引:9
|
作者
Galla, T
机构
[1] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
[2] CNR, INFM, Trieste SISSA Unit, I-34014 Trieste, Italy
关键词
disordered systems (theory); game-theory (theory); applications to game theory and mathematical economics;
D O I
10.1088/1742-5468/2005/11/P11005
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A system of replicators with Hebbian random couplings is studied using dynamical methods. The self-reproducing species are here characterized by a set of binary traits, and they interact based on complementarity. In the case of an extensive number of traits we use path-integral techniques to demonstrate how the coupled dynamics of the system can be formulated in terms of an effective single-species process in the thermodynamic limit, and how persistent order parameters characterizing the stationary states may be computed from this process in agreement with existing replica studies of the statics. Numerical simulations confirm these results. The analysis of the dynamics allows an interpretation of two different types of phase transitions of the model in terms of memory onset at finite and diverging integrated response, respectively. We extend the analysis to the case of diluted couplings of an arbitrary symmetry, where replica theory is not applicable. Finally the dynamics, and in particular the approach to the stationary state of the model with a finite number of traits, are addressed.
引用
收藏
页码:79 / 101
页数:23
相关论文
共 50 条
  • [21] The stability of fixed points for a Kuramoto model with Hebbian interactions
    Bronski, Jared C.
    He, Yizhang
    Li, Xinye
    Liu, Yue
    Sponseller, Danielle Rae
    Wolbert, Seth
    CHAOS, 2017, 27 (05)
  • [22] A Mathematical Analysis of the Effects of Hebbian Learning Rules on the Dynamics and Structure of Discrete-Time Random Recurrent Neural Networks
    Siri, Benoit
    Berry, Hugues
    Cessac, Bruno
    Delord, Bruno
    Quoy, Mathias
    NEURAL COMPUTATION, 2008, 20 (12) : 2937 - 2966
  • [23] Meta-Learning through Hebbian Plasticity in Random Networks
    Najarro, Elias
    Risi, Sebastian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [24] Extinction dynamics in a large ecological system with random interspecies interactions
    Tokita, K
    Yasutomi, A
    UNIFYING THEMES IN COMPLEX SYSTEMS, 2000, : 541 - 556
  • [25] Multidimensional opinion dynamics with heterogeneous bounded confidences and random interactions☆
    Cheng, Jiangjiang
    Chen, Ge
    Mei, Wenjun
    Bullo, Francesco
    AUTOMATICA, 2025, 172
  • [26] The evolutionary dynamics of selfish replicators: A two-level selection model
    Godelle, B
    Reboud, X
    JOURNAL OF THEORETICAL BIOLOGY, 1997, 185 (03) : 401 - 413
  • [27] On the nonergodic dynamics of the Ising anti-Hebbian model
    Nokura, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (20): : 5695 - 5713
  • [28] Evolutionary Game-Theoretic Approach to the Population Dynamics of Early Replicators
    Mariano, Matheus S.
    Fontanari, Jose F.
    LIFE-BASEL, 2024, 14 (09):
  • [29] Random perturbations to Hebbian synapses of associative memory using a genetic algorithm
    Imada, A
    Araki, K
    BIOLOGICAL AND ARTIFICIAL COMPUTATION: FROM NEUROSCIENCE TO TECHNOLOGY, 1997, 1240 : 398 - 407
  • [30] Hebbian Learning in a Random Network Captures Selectivity Properties of the Prefrontal Cortex
    Lindsay, Grace W.
    Rigotti, Mattia
    Warden, Melissa R.
    Miller, Earl K.
    Fusi, Stefano
    JOURNAL OF NEUROSCIENCE, 2017, 37 (45): : 11021 - 11036