Resonance problem of a class of singular quasilinear elliptic equations

被引:0
|
作者
Jia, Gao [1 ]
Li, Fanglan [2 ]
Ding, Zhonghai [3 ]
机构
[1] Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Shanghai Med Instrumentat Coll, Dept Basic Sci, Shanghai 200093, Peoples R China
[3] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
基金
中国国家自然科学基金;
关键词
35J50; 35H30; 35B34; resonance problem; weighted Sobolev space; singular quasiliner elliptic equation; near-eigenvalue;
D O I
10.1080/00036811.2014.967231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the resonance problem of a class of singular quasilinear elliptic equations with respect to its higher near-eigenvalues. Under a generalized Landesman-Lazer condition, it is proved that the resonance problem admits at least one nontrivial solution in weighted Sobolev spaces. The proof is based upon applying the Galerkin-type technique, the Brouwer's fixed-point theorem and a compact embedding theorem of weighted Sobolev spaces by Shapiro.
引用
收藏
页码:2095 / 2109
页数:15
相关论文
共 50 条
  • [41] Singular nonhomogeneous quasilinear elliptic equations with a convection term
    Goncalves, J. V.
    Marcial, M. R.
    Miyagaki, O. H.
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (14-15) : 2280 - 2295
  • [42] Prescribed singular submanifolds of some quasilinear elliptic equations
    Grillot, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (06) : 839 - 856
  • [43] Prescribed singular submanifolds of some quasilinear elliptic equations
    Grillot, Michele
    Nonlinear Analysis, Theory, Methods and Applications, 1998, 34 (06): : 839 - 856
  • [44] SOLUTIONS TO SINGULAR QUASILINEAR ELLIPTIC EQUATIONS ON BOUNDED DOMAINS
    Li, Zhouxin
    Wang, Youjin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [45] Existence of Solutions to Quasilinear Elliptic Equations With Singular Weights
    Iturriaga, Leonelo
    Lorca, Sebastian
    Montenegro, Marcelo
    ADVANCED NONLINEAR STUDIES, 2010, 10 (01) : 109 - 120
  • [46] QUASILINEAR ELLIPTIC EQUATIONS WITH SINGULAR QUADRATIC GROWTH TERMS
    Boccardo, Lucio
    Leonori, Tommaso
    Orsina, Luigi
    Petitta, Francesco
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (04) : 607 - 642
  • [47] On positive solutions for a class of singular quasilinear elliptic systems
    Miyagaki, O. H.
    Rodrigues, R. S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) : 818 - 833
  • [48] Stability of solution of a class of quasilinear elliptic equations
    Ran Q.-K.
    Fang A.-N.
    Acta Mathematicae Applicatae Sinica, 2002, 18 (3) : 461 - 470
  • [49] On positive solutions for a class of quasilinear elliptic equations
    Cintra, Willian
    Medeiros, Everaldo
    Severo, Uberlandio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (03):
  • [50] On positive solutions for a class of quasilinear elliptic equations
    Willian Cintra
    Everaldo Medeiros
    Uberlandio Severo
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70