Optimal feedback quantizers for n-dimensional systems with discrete-valued input

被引:2
|
作者
Minami, Yuki [1 ,2 ]
Azuma, Shun-ichi [1 ]
Sugie, Toshiharu [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Dept Syst Sci, Kyoto 6110011, Japan
[2] Maizuru Natl Coll Technol, Dept Control Engn, Maizuru, Kyoto 6258511, Japan
关键词
n-Dimensional system; Discrete-valued input; Feedback quantizer; Halftoning; MODEL; STABILIZATION; QUANTIZATION; STABILITY; ROESSER;
D O I
10.1016/j.nahs.2009.06.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses an optimal design problem of feedback quantizers for a class of n-dimensional (n-D) systems whose input signals are restricted to discrete-valued ones. First, for an arbitrary given quantizer, we analyze the maximum discrepancy between outputs of both the discrete-valued input n-D system connected with the quantizer and its corresponding continuous-valued input one. Based on this result, an optimal feedback quantizer which minimizes the discrepancy is derived in a closed form. A numerical example is given to demonstrate its effectiveness even in the case of coarse quantization. Second, we apply the optimal feedback quantizer to generate binary halftone images to verify its applicability and potential to real problems. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:345 / 356
页数:12
相关论文
共 50 条
  • [41] OPERATOR VALUED MEASURES FOR OPTIMAL FEEDBACK CONTROL OF INFINITE DIMENSIONAL SYSTEMS
    Ahmed, N. U.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2012, 21 (2-3): : 187 - 204
  • [42] Chaos synchronization for a class of discrete dynamical systems on the N-dimensional torus
    Rosier, L
    Millérioux, G
    Bloch, G
    SYSTEMS & CONTROL LETTERS, 2006, 55 (03) : 223 - 231
  • [43] ON STABLE AND UNSTABLE PERIODIC SOLUTIONS OF N-DIMENSIONAL DISCRETE DYNAMICAL SYSTEMS
    Luo, Albert C. J.
    Guo, Yu
    IMECE 2009: PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, VOL 10, PTS A AND B, 2010, : 945 - 953
  • [44] APPROXIMATING REACHABLE SETS FOR N-DIMENSIONAL LINEAR DISCRETE-SYSTEMS
    GAYEK, JE
    FISHER, ME
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1987, 4 (02) : 149 - 159
  • [45] PRACTICAL-BIBO STABILITY OF N-DIMENSIONAL DISCRETE-SYSTEMS
    AGATHOKLIS, P
    BRUTON, LT
    IEE PROCEEDINGS-G CIRCUITS DEVICES AND SYSTEMS, 1983, 130 (06): : 236 - 242
  • [46] Optimal subdivisions of n-dimensional domains
    Leonardi, GP
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2000, 3A : 109 - 112
  • [47] Experimental verification of multirate and Model Predictive Control for discrete-valued control systems
    Ishihara, Nijihiko
    Chida, Yuichi
    Tanemura, Masaya
    MECHANICAL ENGINEERING JOURNAL, 2021, 8 (05):
  • [48] Gradient-based parameter optimization for systems containing discrete-valued functions
    Wilson, E
    Rock, SM
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2002, 12 (11) : 1009 - 1028
  • [49] SYNTHESIS OF CONTROL MANY-DIMENSIONAL FORMING FILTER OF DISCRETE-VALUED MARKOV SEQUENCES
    VILDYAEV, IK
    LAGUTENKO, OI
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1994, 37 (3-4): : A65 - A71
  • [50] EXTENSION OF N-DIMENSIONAL LATTICE-VALUED NEGATIONS
    Palmeira, E. S.
    Bedregal, B. C.
    DECISION MAKING AND SOFT COMPUTING, 2014, 9 : 306 - 311