Stabilization and heteroepitaxial growth of metastable tetragonal FeS thin films by pulsed laser deposition

被引:5
|
作者
Hanzawa, Kota [1 ]
Sasase, Masato [2 ]
Hiramatsu, Hidenori [1 ,2 ]
Hosono, Hideo [1 ,2 ]
机构
[1] Tokyo Inst Technol, Inst Innovat Res, Lab Mat & Struct, Tokyo, Japan
[2] Tokyo Inst Technol, Mat Res Ctr Element Strategy, Tokyo, Japan
来源
SUPERCONDUCTOR SCIENCE & TECHNOLOGY | 2019年 / 32卷 / 05期
基金
日本学术振兴会;
关键词
iron sulfide; iron chalcogenides; pulsed laser deposition; non-equilibrium; IRON-BASED SUPERCONDUCTORS; SRTIO3;
D O I
10.1088/1361-6668/ab097e
中图分类号
O59 [应用物理学];
学科分类号
摘要
Pulsed laser deposition, a non-equilibrium thin-film growth technique, was used to stabilize metastable tetragonal iron sulfide (FeS), the bulk state of which is known as a superconductor with a critical temperature of 4 K. Comprehensive experiments revealed four important factors to stabilize tetragonal FeS epitaxial thin films . (i) an optimum growth temperature of 300 degrees C followed by thermal quenching, (ii) an optimum growth rate of similar to 7 nm min(-1), (iii) use of a high-purity bulk target, and (iv) use of a single-crystal substrate with small in-plane lattice mismatch (CaF2). Electrical resistivity measurements indicated that none of the films exhibited superconductivity. Although an electric double-layer transistor structure was fabricated using the tetragonal FeS epitaxial film as a channel layer to achieve high-density carrier doping, no phase transition was observed. Possible reasons for the lack of superconductivity include lattice strain, off-stoichiometry of the film, electrochemical etching by the ionic liquid under gate bias, and surface degradation during device fabrication.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Heteroepitaxial Growth of Perovskite CaTaO2N Thin Films by Nitrogen Plasma-Assisted Pulsed Laser Deposition
    Oka, Daichi
    Hirose, Yasushi
    Fukumura, Tomoteru
    Hasegawa, Tetsuya
    CRYSTAL GROWTH & DESIGN, 2014, 14 (01) : 87 - 90
  • [32] Heteroepitaxial growth of SnSe films by pulsed laser deposition using Se-rich targets
    Inoue, Takeshi
    Hiramatsu, Hidenori
    Hosono, Hideo
    Kamiya, Toshio
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (20)
  • [33] Ellipsometric spectra and growth of MgO thin films by pulsed laser deposition
    Zhang, Yue-Li
    Mo, Dang
    Chen, Xiao-Yuan
    Mak, Chee-Leng
    Wong, Kin-Hung
    Choy, Chung-Loong
    Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, 2003, 42 (02):
  • [34] Growth and Characterization of ZnO thin Films Grown by Pulsed Laser Deposition
    He, Jianting
    Tan, Boxue
    Wei, Qinqin
    Su, Yuanbin
    Yang, Shulian
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-8, 2012, 383-390 : 6289 - 6292
  • [35] Growth of γ-alumina thin films by pulsed laser deposition and plasma diagnostic
    Yahiaoui, K.
    Abdelli-Messaci, S.
    Aberkane, S. Messaoud
    Siad, M.
    Kellou, A.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2017, 123 (07):
  • [36] Epitaxial growth of Nd:YAG thin films by pulsed laser deposition
    Kumagai, H
    Adachi, K
    Ezaki, M
    Toyoda, K
    Obara, M
    APPLIED SURFACE SCIENCE, 1997, 109 : 528 - 532
  • [37] Pulsed laser deposition - an alternative route to the growth of magnetic thin films
    Jenner, AG
    Hayes, JP
    Stone, LA
    Snelling, HV
    Greenough, RD
    APPLIED SURFACE SCIENCE, 1999, 138 : 408 - 412
  • [38] Growth of ReS2 thin films by pulsed laser deposition
    Vishal, B.
    Sharona, H.
    Bhat, U.
    Paul, A.
    Sreedhara, M. B.
    Rajaji, V
    Sarma, S. C.
    Narayana, C.
    Peter, S. C.
    Datta, R.
    THIN SOLID FILMS, 2019, 685 : 81 - 87
  • [40] Au cluster growth on ZnO thin films by pulsed laser deposition
    Gyorgy, E.
    Santiso, J.
    Figueras, A.
    Giannoudakos, A.
    Kompitsas, M.
    Mihailescu, I. N.
    Ducu, C.
    APPLIED SURFACE SCIENCE, 2006, 252 (13) : 4429 - 4432