Parameter Estimation of the Negative Binomial-New Weighted Lindley Distribution by the Method of Maximum Likelihood

被引:2
|
作者
Thongteeraparp, Ampai [1 ]
Volodin, A. [2 ]
机构
[1] Kasetsart Univ, Dept Stat, Bangkok 10903, Thailand
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
关键词
method of maximum likelihood; count data analysis; negative binomial-new weighted Lindley distribution;
D O I
10.1134/S1995080220030178
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we investigate the parameter estimation of the Negative Binomial-New Weighted Lindley distribution. We are interested in the maximum likelihood method because it provides estimators with many superior properties, such as minimum variance and asymptotically unbiased estimators. The simulation study is performed in order to investigate the accuracy of the maximum likelihood estimators of the parameters of the Negative Binomial-New Weighted Lindley distribution.
引用
收藏
页码:430 / 434
页数:5
相关论文
共 50 条
  • [21] Maximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious Diseases
    Lloyd-Smith, James O.
    PLOS ONE, 2007, 2 (02):
  • [22] EXISTENCE AND UNIQUENESS OF THE MAXIMUM-LIKELIHOOD ESTIMATOR FOR THE 2-PARAMETER NEGATIVE BINOMIAL-DISTRIBUTION
    ARAGON, J
    EBERLY, D
    EBERLY, S
    STATISTICS & PROBABILITY LETTERS, 1992, 15 (05) : 375 - 379
  • [23] Zero-Truncated Negative Binomial Weighted-Lindley Distribution and Its Application
    Bodhisuwan, Rujira
    Denthet, Sunthree
    Acoose, Tannen
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (13) : 3105 - 3111
  • [24] Zero-Truncated Negative Binomial Weighted-Lindley Distribution and Its Application
    Rujira Bodhisuwan
    Sunthree Denthet
    Tannen Acoose
    Lobachevskii Journal of Mathematics, 2021, 42 : 3105 - 3111
  • [25] THE LINDLEY NEGATIVE-BINOMIAL DISTRIBUTION: PROPERTIES, ESTIMATION AND APPLICATIONS TO LIFETIME DATA
    Mansoor, Muhammad
    Tahir, Muhammad Hussain
    Cordeiro, Gauss M.
    Ali, Sajid
    Alzaatreh, Ayman
    MATHEMATICA SLOVACA, 2020, 70 (04) : 917 - 934
  • [26] A New Mixed Negative Binomial Kumaraswamy–Lindley Distribution and Its Application
    Sunthree Denthet
    Thuntida Ngamkham
    Lobachevskii Journal of Mathematics, 2021, 42 : 3112 - 3122
  • [27] Estimation of the shape parameter k of the negative binomial distribution
    Al-Saleh, MF
    Al-Batainah, FK
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 143 (2-3) : 431 - 441
  • [28] Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter
    Saha, K
    Paul, S
    BIOMETRICS, 2005, 61 (01) : 179 - 185
  • [29] ESTIMATION FOR THE NEGATIVE BINOMIAL-DISTRIBUTION BASED ON THE CONDITIONAL LIKELIHOOD
    ANRAKU, K
    YANAGIMOTO, T
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1990, 19 (03) : 771 - 786
  • [30] Estimation of Shape β Parameter in Kumaraswamy Distribution Using Maximum Likelihood and Bayes Method
    Simbolon, H. G.
    Fithriani, I.
    Nurrohmah, S.
    INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2016 (ISCPMS 2016), 2017, 1862