Reliable updates of the transformation in the iterative closest point algorithm

被引:4
|
作者
Bergstrom, Per [1 ]
机构
[1] Lulea Univ Technol, Dept Engn Sci & Math, Div Math Sci, S-97187 Lulea, Sweden
关键词
Convergence; Iterative closest point; Point-to-plane; Point-to-point; Registration; REGISTRATION; INSPECTION;
D O I
10.1007/s10589-015-9771-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The update of the rigid body transformation in the iterative closest point (ICP) algorithm is considered. The ICP algorithm is used to solve surface registration problems where a rigid body transformation is to be found for fitting a set of data points to a given surface. Two regions for constraining the update of the rigid body transformation in its parameter space to make it reliable are introduced. One of these regions gives a monotone convergence with respect to the value of the mean square error and the other region gives an upper bound for this value. Point-to-plane distance minimization is then used to obtain the update of the transformation such that it satisfies the used constraint.
引用
收藏
页码:543 / 557
页数:15
相关论文
共 50 条
  • [41] Robust scaling iterative closest point algorithm with bidirectional distance measurement
    Zhu, J. H.
    Zheng, N. N.
    Yuan, Z. J.
    Du, S. Y.
    Ma, L.
    ELECTRONICS LETTERS, 2010, 46 (24) : 1604 - 1605
  • [42] Precise iterative closest point algorithm with corner point constraint for isotropic scaling registration
    Du, Shaoyi
    Cui, Wenting
    Wu, Liyang
    Zhang, Sirui
    Zhang, Xuetao
    Xu, Guanglin
    Xu, Meifeng
    MULTIMEDIA SYSTEMS, 2019, 25 (02) : 119 - 126
  • [43] Precise iterative closest point algorithm with corner point constraint for isotropic scaling registration
    Shaoyi Du
    Wenting Cui
    Liyang Wu
    Sirui Zhang
    Xuetao Zhang
    Guanglin Xu
    Meifeng Xu
    Multimedia Systems, 2019, 25 : 119 - 126
  • [44] A Modified Iterative Closest Point Algorithm for 3D Point Cloud Registration
    Marani, Roberto
    Reno, Vito
    Nitti, Massimiliano
    D'Orazio, Tiziana
    Stella, Ettore
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2016, 31 (07) : 515 - 534
  • [45] Scaling iterative closest point algorithm for registration of m-D point sets
    Du, Shaoyi
    Zheng, Nanning
    Xiong, Lei
    Ying, Shihui
    Xue, Jianru
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2010, 21 (5-6) : 442 - 452
  • [46] Surface-based 3-D image registration using the Iterative Closest Point algorithm with a closest point transform
    Ge, YR
    Maurer, CR
    Fitzpatrick, JM
    MEDICAL IMAGING 1996: IMAGE PROCESSING, 1996, 2710 : 358 - 367
  • [47] Comparisons of Iterative Closest Point Algorithms
    Wang, Lu
    Sun, Xiaopeng
    UBIQUITOUS COMPUTING APPLICATION AND WIRELESS SENSOR, 2015, 331 : 649 - 655
  • [48] Fast and Robust Iterative Closest Point
    Zhang, Juyong
    Yao, Yuxin
    Deng, Bailin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3450 - 3466
  • [49] Robust symmetric iterative closest point
    Li, Jiayuan
    Hu, Qingwu
    Zhang, Yongjun
    Ai, Mingyao
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 185 : 219 - 231
  • [50] THREE-DIMENSIONAL POINT-CLOUD REGISTRATION USING A GENETIC ALGORITHM AND THE ITERATIVE CLOSEST POINT ALGORITHM
    Torres, D.
    Cuevas, F. J.
    ECTA 2011/FCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION THEORY AND APPLICATIONS AND INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION THEORY AND APPLICATIONS, 2011, : 547 - 552