Logistic regression in meta-analysis using aggregate data

被引:8
|
作者
Chang, BH
Lipsitz, S
Waternaux, C
机构
[1] Bedford VA Med Ctr, Ctr Hlth Qual Outcomes & Econ Res, Bedford, MA 01730 USA
[2] Harvard Univ, Sch Publ Hlth, Boston, MA 02115 USA
[3] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[4] New York State Psychiat Inst & Hosp, Div Biostat, New York, NY 10032 USA
关键词
D O I
10.1080/02664760050003605
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derived two methods to estimate the logistic regression coefficients in a meta-analysis when only the 'aggregate' data (mean values) from each study are available. The estimators we proposed are the discriminant function estimator and the reverse Taylor series approximation. These two methods of estimation gave similar estimators using an example of individual data. However, when aggregate data were used, the discriminant function estimators were quite different from the other two estimators. A simulation study was then performed to evaluate the performance of these two estimators as well as the estimator obtained from the model that simply uses the aggregate data in a logistic regression model. The simulation study showed that all three estimators are biased. The bias increases as the variance of the covariate increases. Thr distribution type of the covariates also affects the bias. In general, the estimator from the logistic regression using the aggregate data has less bias and better coverage probabilities than the other two estimators. We concluded that analysts should be cautious in using aggregate data to estimate the parameters of the logistic regression model for the underlying individual data.
引用
收藏
页码:411 / 424
页数:14
相关论文
共 50 条
  • [21] Aggregate data meta-analysis with time-to-event outcomes
    Williamson, PR
    Smith, CT
    Hutton, JL
    Marson, AG
    STATISTICS IN MEDICINE, 2002, 21 (22) : 3337 - 3351
  • [22] Meta-analysis of individual- and aggregate-level data
    Sutton, A. J.
    Kendrick, D.
    Coupland, C. A. C.
    STATISTICS IN MEDICINE, 2008, 27 (05) : 651 - 669
  • [23] Meta-analysis of continuous outcomes combining individual patient data and aggregate data
    Riley, Richard D.
    Lambert, Paul C.
    Staessen, Jan A.
    Wang, Jiguang
    Gueyffier, Francois
    Thijs, Lutgarde
    Boutitie, Florent
    STATISTICS IN MEDICINE, 2008, 27 (11) : 1870 - 1893
  • [24] Regression Analysis of Aggregate Continuous Data
    Moineddin, Rahim
    Urquia, Marcelo Luis
    EPIDEMIOLOGY, 2014, 25 (06) : 929 - 930
  • [25] Individual participant data meta-analysis versus aggregate data meta-analysis: A case study in eczema and food allergy prevention
    Van Vogt, Eleanor
    Cro, Suzie
    Cornelius, Victoria R.
    Williams, Hywel C.
    Askie, Lisa M.
    Phillips, Rachel
    Kelleher, Maeve M.
    Boyle, Robert J.
    CLINICAL AND EXPERIMENTAL ALLERGY, 2022, 52 (05): : 628 - 645
  • [26] A Guide to Estimating the Reference Range From a Meta-Analysis Using Aggregate or Individual Participant Data
    Siegel, Lianne
    Murad, M. Hassan
    Riley, Richard D.
    Bazerbachi, Fateh
    Wang, Zhen
    Chu, Haitao
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2022, 191 (05) : 948 - 956
  • [27] ANALYSIS OF PROPORTIONATE MORTALITY DATA USING LOGISTIC-REGRESSION MODELS
    ROBINS, JM
    BLEVINS, D
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 1987, 125 (03) : 524 - 535
  • [28] Causally interpretable meta-analysis combining aggregate and individual participant data
    Rott, Kollin W.
    Clark, Justin M.
    Murad, M. Hassan
    Hodges, James S.
    Huling, Jared D.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2025,
  • [29] METHODS FOR RELAXING THE PROPORTIONAL ODDS ASSUMPTION IN META-ANALYSIS OF AGGREGATE DATA
    Disher, T.
    VALUE IN HEALTH, 2024, 27 (06) : S263 - S263
  • [30] Symptomatic benefits of testosterone treatment in patient subgroups: a systematic review, individual participant data meta-analysis, and aggregate data meta-analysis
    Hudson, Jemma
    Cruickshank, Moira
    Quinton, Richard
    Aucott, Lorna
    Wu, Frederick
    Grossmann, Mathis
    Bhasin, Shalender
    Snyder, Peter J.
    Ellenberg, Susan S.
    Travison, Thomas G.
    Brock, Gerald B.
    Gianatti, Emily J.
    van der Schouw, Yvonne T.
    Emmelot-Vonk, Marielle H.
    Giltay, Erik J.
    Hackett, Geoff
    Ramachandran, Sudarshan
    Svartberg, Johan
    Hildreth, Kerry L.
    Antonic, Kristina Groti
    Tenover, Joyce Lisa
    Tan, Hui Meng
    Kong, Christopher Ho Chee
    Tan, Wei Shen
    Marks, Leonard S.
    Ross, Richard J.
    Schwartz, Robert S.
    Manson, Paul
    Roberts, Stephen A.
    Andersen, Marianne Skovsager
    Magnussen, Line Velling
    Aceves-Martins, Magaly
    Gillies, Katie
    Hernandez, Rodolfo
    Oliver, Nick
    Dhillo, Waljit S.
    Bhattacharya, Siladitya
    Brazzelli, Miriam
    Jayasena, Channa N.
    LANCET HEALTHY LONGEVITY, 2023, 4 (10): : e561 - e572