THE EXACT DISTRIBUTION OF THE CONDITION NUMBER OF A GAUSSIAN MATRIX

被引:8
|
作者
Anderson, William [1 ]
Wells, Martin T. [2 ]
机构
[1] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Stat Sci, Ithaca, NY 14853 USA
关键词
condition number; eigenvalues; random matrices; singular values; Wishart distribution;
D O I
10.1137/070698932
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose G(pxn) is a real random matrix whose elements are independent and identically distributed standard normal random variables. Let W-pxp = G(pxn)G(nxp)(T), which is the usual Wishart matrix. In addition, let lambda(1) > lambda(2) > ... > lambda(p) > 0 and sigma(1) > sigma(2) > ... > sigma(p) > 0 denote the distinct eigenvalues of the matrix Wpxp and singular values of G(pxn), respectively. The 2-norm condition number of G(pxn) is kappa(2)(G(pxn)) = root lambda(1)/lambda(p) = sigma(1)/sigma(p), the square root of the ratio of largest to smallest eigenvalues of the Wishart matrix. In this article we derive an exact expression, albeit somewhat complex, for the probability density function of kappa(2)(G(pxn)).
引用
收藏
页码:1125 / 1130
页数:6
相关论文
共 50 条
  • [31] Exact Distribution for the Product of Two Correlated Gaussian Random Variables
    Cui, Guolong
    Yu, Xianxiang
    Iommelli, Salvatore
    Kong, Lingjiang
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (11) : 1662 - 1666
  • [32] On the Condition Number Distribution of Complex Wishart Matrices
    Matthaiou, Michail
    McKay, Matthew R.
    Smith, Peter J.
    Nossek, Josef A.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2010, 58 (06) : 1705 - 1717
  • [33] Distribution of the Demmel Condition Number of Wishart Matrices
    Zhong, Caijun
    McKay, Matthew R.
    Ratnarajah, Tharm
    Wong, Kai-Kit
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2011, 59 (05) : 1309 - 1320
  • [34] EXACT GAUSSIAN SOLUTION OF A TURBULENT-FLOW AND A TEMPERATURE DISTRIBUTION
    IMAMURA, T
    PROGRESS OF THEORETICAL PHYSICS, 1972, 48 (01): : 339 - &
  • [35] Estimates on the Distribution of the Condition Number of Singular Matrices
    C. Beltran
    L.M. Pardo
    Foundations of Computational Mathematics, 2007, 7 : 87 - 134
  • [36] Condition number related to the outer inverse of a complex matrix
    Mosic, Dijana
    Djordjevic, Dragan S.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (08) : 2826 - 2834
  • [37] On the condition number of the Vandermonde matrix of the nth cyclotomic polynomial
    Di Scala, Antonio J.
    Sanna, Carlo
    Signorini, Edoardo
    JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2021, 15 (01) : 174 - 178
  • [38] An upper bound for the condition number of a matrix in spectral norm
    Piazza, G
    Politi, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 143 (01) : 141 - 144
  • [39] An upper bound for the spectral condition number of a diagonalizable matrix
    Jiang, Erxiong
    Lam, Peter C. B.
    Linear Algebra and Its Applications, 1997, 262 (1-3): : 165 - 178
  • [40] An upper bound for the spectral condition number of a diagonalizable matrix
    Jiang, EX
    Lam, PCB
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 262 : 165 - 178