Carrying out pseudo dual nucleic acid detection from sample to visual result in a polypropylene bag with CRISPR/Cas12a

被引:38
|
作者
Wu, Hui [1 ]
Chen, Yanju [1 ]
Shi, Ya [2 ]
Wang, Liu [3 ]
Zhang, Mengyao [1 ]
Wu, Jian [1 ,5 ]
Chen, Huan [2 ,4 ]
机构
[1] Zhejiang Univ, Coll Biosyst Engn & Food Sci, Hangzhou 310058, Peoples R China
[2] Zhejiang Inst Microbiol, Key Lab Microbiol Technol & Bioinformat Zhejiang, Hangzhou 310012, Peoples R China
[3] Zhejiang Acad Agr Sci, Inst Agroprod Safety & Nutr, State Key Lab Managing Biot & Chem Threats Qual &, Key Lab Informat Traceabil Agr Prod,Minist Agr &, Hangzhou 310021, Peoples R China
[4] Hangzhou Digital Micro Biotech Co Ltd, Hangzhou 311215, Peoples R China
[5] Minist Agr, Key Lab Site Proc Equipment Agr Prod, Hangzhou 310058, Peoples R China
来源
关键词
Nucleic acid detection; Dual detection; Polypropylene bag; Salmonella typhimurium; SARS-CoV-2; AMPLIFICATION; EXTRACTION;
D O I
10.1016/j.bios.2021.113001
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Amplification-based nucleic acid detection is widely employed in food safety, medical diagnosis and environment monitoring. However, conventional nucleic acid analysis has to be carried out in laboratories because of requiring expensive instruments and trained personnel. If people could do nucleic acid detection at home by themselves, the application of nucleic acid detection would be greatly accelerated. We herein reported a polypropylene (PP) bag-based method for convenient detection of nucleic acids in the oil-sealed space. The PP bag has three chambers which are responsible for lysis, washing and amplification/detection, respectively. After adding sample, nucleic acids are adsorbed on magnetic particles (MPs) and moved into these three chambers successively through immiscible oil channel by an external magnet. Combined with isothermal amplification, the PP bag can be incubated in a water bath or milk warmer and acted as a reaction tube. With highly specific CRISPR technology, Salmonella typhimurium (St) and SARS-CoV-2 can be visually detected in these PP bags within 1 h, indicating its potential household application. To further improve the reliability of nucleic acid testing at home, a logic decision method is introduced by detecting both target and endogenous reference gene. Positive/negative/invalid detection result can be obtained by chronologically adding the CRISPR reagents of target and endogenous reference gene. We anticipate that this PP bag can provide a novel toolkit for nucleic acid detection in people's daily life.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Amplified detection of nucleic acids and proteins using an isothermal proximity CRISPR Cas12a assay
    Li, Yongya
    Mansour, Hayam
    Watson, Colton J. F.
    Tang, Yanan
    MacNeil, Adam J.
    Li, Feng
    CHEMICAL SCIENCE, 2021, 12 (06) : 2133 - 2137
  • [22] Rotary Valve-Assisted Fluidic System Coupling with CRISPR/Cas12a for Fully Integrated Nucleic Acid Detection
    Wu, Hui
    Qian, Siwenjie
    Peng, Cheng
    Wang, Xiaofu
    Wang, Tingzhang
    Zhong, Xiaoping
    Chen, Yanju
    Yang, Qunqing
    Xu, Junfeng
    Wu, Jian
    ACS SENSORS, 2021, 6 (11) : 4048 - 4056
  • [23] A universal nucleic acid detection platform combing CRISPR/Cas12a and strand displacement amplification with multiple signal readout
    Li, Tian
    Wang, Jinjin
    Fang, Jiaoyuan
    Chen, Fei
    Wu, Xinru
    Wang, Lan
    Gao, Meng
    Zhang, Liping
    Li, Sanqiang
    TALANTA, 2024, 273
  • [24] Rapid and Amplification-free Nucleic Acid Detection with DNA Substrate-Mediated Autocatalysis of CRISPR/Cas12a
    Zhou, Zhongqi
    Lau, Cia-Hin
    Wang, Jianchao
    Guo, Rui
    Tong, Sheng
    Li, Jiaqi
    Dong, Wenjiao
    Huang, Zhihao
    Wang, Tao
    Huang, Xiaojun
    Yu, Ziqing
    Wei, Chiju
    Chen, Gang
    Xue, Hongman
    Zhu, Haibao
    ACS OMEGA, 2024, 9 (26): : 28866 - 28878
  • [25] Rapid Visual CRISPR Assay: A Naked-Eye Colorimetric Detection Method for Nucleic Acids Based on CRISPR/Cas12a and a Convolutional Neural Network
    Xie, Shengsong
    Tao, Dagang
    Fu, Yuhua
    Xu, Bingrong
    Tang, You
    Steinaa, Lucilla
    Hemmink, Johanneke D.
    Pan, Wenya
    Huang, Xin
    Nie, Xiongwei
    Zhao, Changzhi
    Ruan, Jinxue
    Zhang, Yi
    Han, Jianlin
    Fu, Liangliang
    Ma, Yunlong
    Li, Xinyun
    Liu, Xiaolei
    Zhao, Shuhong
    ACS SYNTHETIC BIOLOGY, 2022, 11 (01): : 383 - 396
  • [26] A reversible valve-assisted chip coupling with integrated sample treatment and CRISPR/Cas12a for visual detection of Vibrio parahaemolyticus
    Wu, Hui
    Chen, Yanju
    Yang, Qunqing
    Peng, Cheng
    Wang, Xiaofu
    Zhang, Mengyao
    Qian, Siwenjie
    Xu, Junfeng
    Wu, Jian
    BIOSENSORS & BIOELECTRONICS, 2021, 188
  • [27] CRISPR/Cas12a and recombinase polymerase amplification-based rapid on-site nucleic acid detection of duck circovirus
    Liang, Qi-Zhang
    Chen, Wei
    Liu, Rong-Chang
    Fu, Qiu-Ling
    Fu, Guang-Hua
    Cheng, Long-Fei
    Chen, Hong-Mei
    Jiang, Nan-Song
    Zhu, Ting
    Huang, Yu
    VIROLOGY JOURNAL, 2024, 21 (01)
  • [28] Ultra-Sensitive and Rapid Detection of Pathogenic Yersinia enterocolitica Based on the CRISPR/Cas12a Nucleic Acid Identification Platform
    Xiao, Yiran
    Ren, Honglin
    Hu, Pan
    Wang, Yang
    Wang, Han
    Li, Yansong
    Feng, Kai
    Wang, Cong
    Cao, Qi
    Guo, Yuxi
    Liu, Zengshan
    Lu, Shiying
    FOODS, 2022, 11 (14)
  • [29] Enhanced CRISPR/Cas12a Fluorimetry via a DNAzyme-Embedded Framework Nucleic Acid Substrate
    Wei, Luyu
    Wang, Zhilong
    Dong, Yongzhen
    Yu, Deyang
    Chen, Yiping
    ANALYTICAL CHEMISTRY, 2024, 96 (41) : 16453 - 16461
  • [30] RPA-CRISPR/Cas12a mediated isothermal amplification for visual detection of Phytophthora sojae
    Guo, Yufang
    Xia, Hongming
    Dai, Tingting
    Liu, Tingli
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2023, 13