Cross-Platform Analysis with Binarized Gene Expression Data

被引:0
|
作者
Tuna, Salih [1 ]
Niranjan, Mahesan [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, ISIS Res Grp, Southampton SO9 5NH, Hants, England
关键词
Cross-platform analysis; binary gene expression; classification; MICROARRAY DATA; BREAST-CANCER; UNCERTAINTY; MODEL;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
With widespread use of microarray technology as a potential diagnostics tool, the comparison of results obtained from the use of different platforms is of interest. When inference methods are designed using data collected using a particular platform, they are unlikely to work directly on measurements taken from a different type of array. We report on this cross-platform transfer problem, and show that, working with transcriptome representations at binary numerical precision, similar to the gene expression bar code method, helps circumvent the variability across platforms in several cancer classification tasks. We compare our approach with a recent machine learning method specifically designed for shifting distributions, i.e., problems in which the training and testing data are not, drawn from identical probability distributions, and show superior performance in three of the four problems in which we could directly compare.
引用
收藏
页码:439 / 449
页数:11
相关论文
共 50 条
  • [21] MAGIC: access portal to a cross-platform gene expression compendium for maize
    Fu, Qiang
    Fierro, Ana Carolina
    Meysman, Pieter
    Sanchez-Rodriguez, Aminael
    Vandepoele, Klaas
    Marchal, Kathleen
    Engelen, Kristof
    BIOINFORMATICS, 2014, 30 (09) : 1316 - 1318
  • [22] CuBlock: a cross-platform normalization method for gene-expression microarrays
    Junet, Valentin
    Farres, Judith
    Mas, Jose M.
    Daura, Xavier
    BIOINFORMATICS, 2021, 37 (16) : 2365 - 2373
  • [23] Optimizing Cross-Platform Data Movement
    Kruse, Sebastian
    Kaoudi, Zoi
    Quiane-Ruiz, Jorge-Arnulfo
    Chawla, Sanjay
    Naumann, Felix
    Contreras-Rojas, Bertty
    2019 IEEE 35TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2019), 2019, : 1642 - 1645
  • [24] CrossICC: iterative consensus clustering of cross-platform gene expression data without adjusting batch effect
    Zhao, Qi
    Sun, Yu
    Liu, Zekun
    Zhang, Hongwan
    Li, Xingyang
    Zhu, Kaiyu
    Liu, Ze-Xian
    Ren, Jian
    Zuo, Zhixiang
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (05) : 1818 - 1824
  • [25] InCroMAP: integrated analysis of cross-platform microarray and pathway data
    Wrzodek, Clemens
    Eichner, Johannes
    Buchel, Finja
    Zell, Andreas
    BIOINFORMATICS, 2013, 29 (04) : 506 - 508
  • [26] On Supporting Cross-Platform Statistical Data Analysis Using JADE
    Wu, Chien-Ho
    Shao, Yuehjen E.
    Liu, Jeng-Fu
    Chang, Tsair-Yuan
    OPPORTUNITIES AND CHALLENGES FOR NEXT-GENERATION APPLIED INTELLIGENCE, 2009, 214 : 271 - +
  • [27] Cross-platform comparison and visualisation of gene expression data using co-inertia analysis -: art. no. 59
    Culhane, AC
    Perrière, G
    Higgins, DG
    BMC BIOINFORMATICS, 2003, 4 (1)
  • [28] Three methods for optimization of cross-laboratory and cross-platform microarray expression data
    Stafford, Phillip
    Brun, Marcel
    NUCLEIC ACIDS RESEARCH, 2007, 35 (10)
  • [29] Merging two gene-expression studies via cross-platform normalization
    Shabalin, Andrey A.
    Tjelmeland, Hakon
    Fan, Cheng
    Perou, Charles M.
    Nobel, Andrew B.
    BIOINFORMATICS, 2008, 24 (09) : 1154 - 1160
  • [30] PLIDA: cross-platform gene expression normalization using perturbed topic models
    Deshwar, Amit G.
    Morris, Quaid
    BIOINFORMATICS, 2014, 30 (07) : 956 - 961