Adaptive estimation in a random coefficient autoregressive model

被引:1
|
作者
Koul, HL [1 ]
Schick, A [1 ]
机构
[1] SUNY BINGHAMTON,DEPT MATH SCI,BINGHAMTON,NY 13902
来源
ANNALS OF STATISTICS | 1996年 / 24卷 / 03期
关键词
locally asymptotically minimax adaptive; semiparametric; stationary; ergodic; generalized M-estimator;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proves the local asymptotic normality of a stationary and ergodic first order random coefficient autoregressive model in a semiparametric setting. This result is used to show that Stein's necessary condition for adaptive estimation of the mean of the random coefficient is satisfied if the distributions of the innovations and the errors in the random coefficients are symmetric around zero. Under these symmetry assumptions, a locally asymptotically minimax adaptive estimator of the mean of the random coefficient is constructed. The paper also proves the asymptotic normality of generalized M-estimators of the parameter of interest. These estimators are used as preliminary estimators in the above construction.
引用
收藏
页码:1025 / 1052
页数:28
相关论文
共 50 条
  • [31] Random coefficient autoregressive processes and the PUCK model with fluctuating potential
    de Sousa, Arthur Matsuo Yamashita Rios
    Takayasu, Hideki
    Takayasu, Misako
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [32] Test for parameter changes in generalized random coefficient autoregressive model
    Zhi-Wen Zhao
    De-Hui Wang
    Cui-Xin Peng
    Journal of Inequalities and Applications, 2014
  • [33] Test for parameter changes in generalized random coefficient autoregressive model
    Zhao, Zhi-Wen
    Wang, De-Hui
    Peng, Cui-Xin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [34] ASYMPTOTIC EXPANSIONS IN SEQUENTIAL ESTIMATION FOR THE FIRST-ORDER RANDOM COEFFICIENT AUTOREGRESSIVE MODEL - REGENERATIVE APPROACH
    MALINOVSKII, VK
    ACTA APPLICANDAE MATHEMATICAE, 1994, 34 (1-2) : 261 - 281
  • [35] First-order random coefficient autoregressive (RCA(1)) model: Joint Whittle estimation and information
    Shitan, Mahendran
    Thavaneswaran, A.
    Vazifedan, Turaj
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2015, 19 (01): : 3 - 10
  • [36] Risk-efficient sequential estimation of multivariate random coefficient autoregressive process
    Karmakar, Bikram
    Mukhopadhyay, Indranil
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2019, 38 (01): : 26 - 45
  • [37] BOOTSTRAP FOR RANDOM COEFFICIENT AUTOREGRESSIVE MODELS
    Fink, Thorsten
    Kreiss, Jens-Peter
    JOURNAL OF TIME SERIES ANALYSIS, 2013, 34 (06) : 646 - 667
  • [38] THE STABILITY OF RANDOM COEFFICIENT AUTOREGRESSIVE MODELS
    QUINN, BG
    NICHOLLS, DF
    INTERNATIONAL ECONOMIC REVIEW, 1981, 22 (03) : 741 - 744
  • [39] Interval Estimation of Random Coefficient Integer-Valued Autoregressive Model Based on Mean Empirical Likelihood Method
    Xu, Xianghong
    Wang, Dehui
    Zhao, Zhiwen
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [40] Nonparametric estimation of the distribution of the autoregressive coefficient from panel random-coefficient AR(1) data
    Leipus, Remigijus
    Philippe, Anne
    Pilipauskaite, Vytaute
    Surgailis, Donatas
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 153 : 121 - 135