On the Hopf-pitchfork bifurcation in the Chua's equation

被引:27
|
作者
Algaba, A
Merino, M
Freire, E
Gamero, E
Rodríguez-Luis, AJ
机构
[1] Univ Huelva, E Politecn Sup, Dept Math, La Rabida 21819, Huelva, Spain
[2] Univ Seville, ES Ingn, Dept Appl Math 2, Seville 41092, Spain
来源
关键词
D O I
10.1142/S0218127400000190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study some periodic and quasiperiodic behaviors exhibited by the Chua's equation with a cubic nonlinearity, near a Hopf-pitchfork bifurcation. We classify the types of this bifurcation in the nondegenerate cases, and point out the presence of a degenerate Hopf-pitchfork bifurcation. In this degenerate situation, analytical and numerical study shows a diversity of bifurcations of periodic orbits. We find a secondary Hopf bifurcation of periodic orbits, where invariant torus appears. This secondary Hopf bifurcation is bounded by a Takens-Bogdanov bifurcation of periodic orbits. Here, a sequence of period-doubling bifurcations of invariant tori is detected. Resonance phenomena are also analyzed. In the case of strong resonance 1:4, we show a new sequence of period-doubling bifurcations of 4T invariant tori.
引用
收藏
页码:291 / 305
页数:15
相关论文
共 50 条
  • [31] ANALYSIS OF THE T-POINT-HOPF BIFURCATION WITH Z2- SYMMETRY. APPLICATION TO CHUA'S EQUATION
    Algaba, Antonio
    Fernandez-Sanchez, Fernando
    Merino, Manuel
    Rodriguez-Luis, Alejandro J.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (04): : 979 - 993
  • [32] Chua Corsage Memristor Oscillator via Hopf Bifurcation
    Mannan, Zubaer Ibna
    Choi, Hyuncheol
    Kim, Hyongsuk
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (04):
  • [33] Hopf Bifurcation in Hutchinson's Equation with Distributed Delay
    Darti, I.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 89 - 93
  • [34] SPECTRAL SIGNATURE OF THE PITCHFORK BIFURCATION - LIOUVILLE EQUATION APPROACH
    GASPARD, P
    NICOLIS, G
    PROVATA, A
    TASAKI, S
    PHYSICAL REVIEW E, 1995, 51 (01): : 74 - 94
  • [35] On the pitchfork bifurcation for the Chafee–Infante equation with additive noise
    Alex Blumenthal
    Maximilian Engel
    Alexandra Neamţu
    Probability Theory and Related Fields, 2023, 187 : 603 - 627
  • [36] Hopf bifurcation of the sunflower equation
    Li, Junyu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2574 - 2580
  • [37] Algebraic Analysis of Zero-Hopf Bifurcation in a Chua System
    Huang, Bo
    Niu, Wei
    Xie, Shaofen
    SYMMETRY-BASEL, 2022, 14 (05):
  • [38] A stochastic pitchfork bifurcation in a reaction-diffusion equation
    Caraballo, T
    Langa, JA
    Robinson, JC
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2013): : 2041 - 2061
  • [39] The Pitchfork Bifurcation
    Rajapakse, Indika
    Smale, Steve
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (09):
  • [40] Relaxation oscillations and the mechanism in a periodically excited vector field with pitchfork–Hopf bifurcation
    Yibo Xia
    Zhengdi Zhang
    Qinsheng Bi
    Nonlinear Dynamics, 2020, 101 : 37 - 51