A Predictor-corrector algorithm with multiple corrections for convex quadratic programming

被引:1
|
作者
Liu, Zhongyi [1 ]
Chen, Yue [2 ]
Sun, Wenyu [3 ]
Wei, Zhihui [4 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Jincheng Coll, Nanjing 211156, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Sch Math Sci, Nanjing 210097, Jiangsu, Peoples R China
[4] Nanjing Univ Sci & Technol, Sch Comp Sci & Technol, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Convex quadratic programming; Primal-dual interior-point method; Predictor-corrector; Polynomial complexity; INTERIOR-POINT ALGORITHM; LINEAR OPTIMIZATION; SOLVER; STEP;
D O I
10.1007/s10589-011-9421-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Recently an infeasible interior-point algorithm for linear programming (LP) was presented by Liu and Sun. By using similar predictor steps, we give a (feasible) predictor-corrector algorithm for convex quadratic programming (QP). We introduce a (scaled) proximity measure and a dynamical forcing factor (centering parameter). The latter is used to force the duality gap to decrease. The algorithm can decrease the duality gap monotonically. Polynomial complexity can be proved and the result coincides with the best one for LP, namely, .
引用
收藏
页码:373 / 391
页数:19
相关论文
共 50 条
  • [41] On iteratively regularized predictor-corrector algorithm for parameter identification*
    Smirnova, Alexandra
    Bakushinsky, Anatoly
    INVERSE PROBLEMS, 2020, 36 (12)
  • [42] A PREDICTOR-CORRECTOR ALGORITHM WITH AN INCREASED RANGE OF ABSOLUTE STABILITY
    CRANE, RL
    KLOPFENSTEIN, RW
    JOURNAL OF THE ACM, 1965, 12 (02) : 227 - +
  • [43] On the Complexity of a Mehrotra-Type Predictor-Corrector Algorithm
    Teixeira, Ana Paula
    Almeida, Regina
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2012, PT III, 2012, 7335 : 17 - 29
  • [44] A NEW PREDICTOR-CORRECTOR ALGORITHM FOR SDP WITH POLYNOMIAL CONVERGENCE
    Chen, Feixiang
    Feng, Yuming
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2012, (29): : 7 - 14
  • [45] A predictor-corrector algorithm combined conjugate gradient with homotopy interior point for general nonlinear programming
    Huang, Qingqun
    Zhu, Zhibin
    Wang, Xiangling
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4379 - 4386
  • [46] A wide neighbourhood predictor-corrector infeasible-interior-point algorithm for symmetric cone programming
    Shahraki, M. Sayadi
    Mansouri, H.
    Delavarkhalafi, A.
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (06): : 2117 - 2134
  • [47] Computational experience with a globally convergent primal-dual predictor-corrector algorithm for linear programming
    Lustig, Irvin J.
    Marsten, Roy E.
    Shanno, David F.
    Mathematical Programming, Series B, 1994, 66 (1-2): : 123 - 135
  • [48] On using Quadratic Interpolation of the Determinant Function to Estimate the Step-Length in a Predictor-Corrector Variant for Semidefinite Programming
    Teixeira, A.
    Bastos, F.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1358 - +
  • [49] Predictor-Corrector Policy Optimization
    Cheng, Ching-An
    Yan, Xinyan
    Ratliff, Nathan
    Boots, Byron
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [50] EFFICIENCY OF PREDICTOR-CORRECTOR PROCEDURES
    HULL, TE
    CREEMER, AL
    JOURNAL OF THE ACM, 1963, 10 (03) : 291 - &