Implicit and explicit representations of continuous-time port-Hamiltonian systems

被引:11
|
作者
Castanos, Fernando [1 ]
Gromov, Dmitry [2 ]
Hayward, Vincent [3 ]
Michalska, Hannah [2 ]
机构
[1] CINVESTAV IPN, Dept Automat Control, Mexico City 07360, DF, Mexico
[2] Dept Elect & Comp Engn, Montreal, PQ H3A 2A7, Canada
[3] Univ Paris 06, Inst Syst Intelligents & Robot, UMR 7222, Paris, France
关键词
Port-Hamiltonian systems; Nonlinear implicit systems; Modeling of physical systems; DYNAMICS; FORMULATION;
D O I
10.1016/j.sysconle.2013.01.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Implicit and explicit representations of smooth, finite-dimensional port-Hamiltonian systems are studied from the perspective of their use in numerical simulation and control design. Implicit representations arise when a system is modeled in Cartesian coordinates and when the system constraints are applied in the form of additional algebraic equations. Explicit representations are derived when generalized coordinates are used. A relationship between the phase spaces for both system representations is derived in this article, justifying the equivalence of the representations in the sense of preserving their Hamiltonian functions as well as their Hamiltonian symplectic forms, ultimately resulting in the same Hamiltonian flow. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:324 / 330
页数:7
相关论文
共 50 条
  • [41] Learning port-Hamiltonian Systems—Algorithms
    V. Salnikov
    A. Falaize
    D. Lozienko
    Computational Mathematics and Mathematical Physics, 2023, 63 : 126 - 134
  • [42] Notch Filters for Port-Hamiltonian Systems
    Dirksz, D. A.
    Scherpen, J. M. A.
    van der Schaft, A. J.
    Steinbuch, M.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (09) : 2440 - 2445
  • [43] Reinforcement Learning for Port-Hamiltonian Systems
    Sprangers, Olivier
    Babuska, Robert
    Nageshrao, Subramanya P.
    Lopes, Gabriel A. D.
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (05) : 1003 - 1013
  • [44] Learnability of Linear Port-Hamiltonian Systems
    Ortega, Juan-Pablo
    Yin, Daiying
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 56
  • [45] From discrete modeling to explicit FE models for port-Hamiltonian systems of conservation laws
    Kotyczka, Paul
    Thoma, Tobias
    IFAC PAPERSONLINE, 2022, 55 (30): : 412 - 417
  • [46] Explicit structure-preserving discretization of port-Hamiltonian systems with mixed boundary control
    Brugnoli, Andrea
    Haine, Ghislain
    Matignon, Denis
    IFAC PAPERSONLINE, 2022, 55 (30): : 418 - 423
  • [47] Explicit Port-Hamiltonian Formulation of Bond Graphs with Dependent Storages
    Pfeifer, Martin
    Caspart, Sven
    Muller, Charles
    Pfeiffer, Silja
    Krebs, Stefan
    Hohmann, Soeren
    IFAC PAPERSONLINE, 2020, 53 (02): : 5579 - 5585
  • [49] Discrete-Time Port-Hamiltonian Systems for Power and Energy Applications
    Garces-Ruiz, Alejandro
    Avila-Becerril, Sofia
    Espinosa-Perez, Gerardo
    IFAC PAPERSONLINE, 2024, 58 (06): : 166 - 171
  • [50] Distributed-Parameter Port-Hamiltonian Systems in Discrete-Time
    Macchelli, Alessandro
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 2931 - 2936