Evolving Spiking Neural Network (ESNN) and Harmony Search Algorithm (HSA) for parameter optimization

被引:0
|
作者
Yusuf, Zulhairi Mi [1 ]
Hamed, Haza Nuzly Abdull [1 ]
Yusuf, Lizawati Mi [1 ]
Isa, Mohd Adham [1 ]
机构
[1] Univ Teknol Malaysia, Fac Comp, Johor Baharu 81310, Johor, Malaysia
关键词
Evolving Spiking Neural Network (ESNN); Harmony Search Algorithm; Parameter Optimization; Modulation Factor; Proportion Factor; Similarity Factors;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spiking Neural Network (SNN) acts as a part of the third generation of Artificial Neural Networks (ANNs). Evolving Spiking Neural Network (ESNN) is one of the most broadly utilized among in SNN models in numerous current research works. During the classification process, ESNN model acts as a classifier and three parameters are used in this article. However, the parameters are needed to set manually before the classification process. To solve the stated problems, ESNN required an optimizer that able to optimize the three parameters such as similarity value, modulation factor and proportion factor. The best estimations of parameters are adaptively chosen by Harmony Search Algorithm (HSA) to abstain from choosing appropriate values for specific issues through the trial-and-error approach. Therefore, this article proposed the integration of ESNN as a classifier and HSA as an optimizer for parameter optimization. The experimental results give favorable accuracy rates via the hybrid of ESNN and HSA.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Portfolio Optimization Using Genetic Algorithm and Harmony Search Algorithm with Varying Operators and Parameter Values
    Lai, Kee Huong
    Siow, Woon Jeng
    Kaw, Ahmad Aniq bin Mohd Nooramin
    Ong, Pauline
    Zainuddin, Zarita
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH 2018): INNOVATIVE TECHNOLOGIES FOR MATHEMATICS & MATHEMATICS FOR TECHNOLOGICAL INNOVATION, 2019, 2184
  • [22] EEG Classification with BSA Spike Encoding Algorithm and Evolving Probabilistic Spiking Neural Network
    Nuntalid, Nuttapod
    Dhoble, Kshitij
    Kasabov, Nikola
    NEURAL INFORMATION PROCESSING, PT I, 2011, 7062 : 451 - +
  • [23] Fuzzy Dynamic Parameter Adaptation in the Harmony Search Algorithm for the Optimization of the Ball and Beam Controller
    Peraza, Cinthia
    Valdez, Fevrier
    Castro, Juan R.
    Castillo, Oscar
    ADVANCES IN OPERATIONS RESEARCH, 2018, 2018
  • [24] An algorithm to detect complexes in PPI network based on harmony search clustering optimization
    Chen L.
    Xie L.
    Yang S.
    Cao Y.
    Huang G.
    Li X.
    Chen, Le (cl@jxust.edu.cn), 1600, IOS Press BV (23): : 215 - 223
  • [25] Evolving Spiking Neural Network as a Classifier: An Experimental Review
    Saravanan, M.
    Bablani, Annushree
    Rangisetty, Navyasai
    ADVANCES IN COMPUTING AND DATA SCIENCES (ICACDS 2022), PT II, 2022, 1614 : 304 - 315
  • [26] Evolving Spiking Neural Network for Robot Locomotion Generation
    Takase, Noriko
    Botzheim, Janos
    Kubota, Naoyuki
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 558 - 565
  • [27] Parameter-setting-free harmony search algorithm
    Geem, Zong Woo
    Sim, Kwee-Bo
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) : 3881 - 3889
  • [28] Evolving spiking neural network controllers for autonomous robots
    Hagras, H
    Pounds-Cornish, A
    Colley, M
    Callaghan, V
    Clarke, G
    2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, : 4620 - 4626
  • [29] A new heuristic optimization algorithm: Harmony search
    Geem, ZW
    Kim, JH
    Loganathan, GV
    SIMULATION, 2001, 76 (02) : 60 - 68
  • [30] Hybrid Harmony Search algorithm for Global Optimization
    Ammar, M.
    Bouaziz, S.
    Alimi, Adel M.
    Abraham, Ajith
    2013 WORLD CONGRESS ON NATURE AND BIOLOGICALLY INSPIRED COMPUTING (NABIC), 2013, : 69 - 75