Unique Normal Form and the Associated Coefficients for a Class of Three-Dimensional Nilpotent Vector Fields

被引:3
|
作者
Li, Jing [1 ]
Kou, Liying [1 ]
Wang, Duo [2 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
来源
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Three-dimensional nilpotent vector field; unique normal form; multiple Lie bracket; transformation with parameters; REDUCTION;
D O I
10.1142/S0218127417502248
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we mainly focus on the unique normal form for a class of three-dimensional vector fields via the method of transformation with parameters. A general explicit recursive formula is derived to compute the higher order normal form and the associated coefficients, which can be achieved easily by symbolic calculations. To illustrate the efficiency of the approach, a comparison of our result with others is also presented.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Three-Dimensional Point Cloud Registration Based on Normal Vector Angle
    Li, Liang
    Cao, Xingyan
    Sun, Jie
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (04) : 585 - 593
  • [42] Computation of the coefficients associated with the normal form of a resonant five-dimensional system
    Zhang, W
    Huseyin, K
    MATHEMATICAL AND COMPUTER MODELLING, 1999, 30 (11-12) : 213 - 228
  • [43] UNIQUE NORMAL FORMS FOR VECTOR-FIELDS AND HAMILTONIANS
    BAIDER, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 78 (01) : 33 - 52
  • [44] UNIQUE NORMAL FORMS FOR PLANAR VECTOR-FIELDS
    BAIDER, A
    CHURCHILL, R
    MATHEMATISCHE ZEITSCHRIFT, 1988, 199 (03) : 303 - 310
  • [45] Three-Dimensional Topological Loops with Nilpotent Multiplication Groups
    Figula, Agota
    Lattuca, Margherita
    JOURNAL OF LIE THEORY, 2015, 25 (03) : 787 - 805
  • [46] Tensorial neutron tomography of three-dimensional magnetic vector fields in bulk materials
    A. Hilger
    I. Manke
    N. Kardjilov
    M. Osenberg
    H. Markötter
    J. Banhart
    Nature Communications, 9
  • [47] Orthogonal, solenoidal, three-dimensional vector fields for no-slip boundary conditions
    Turner, Leaf
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (04) : 741 - 754
  • [49] Tensorial neutron tomography of three-dimensional magnetic vector fields in bulk materials
    Hilger, A.
    Manke, I
    Kardjilov, N.
    Osenberg, M.
    Markoetter, H.
    Banhart, J.
    NATURE COMMUNICATIONS, 2018, 9
  • [50] One-harmonic invariant vector fields on three-dimensional Lie groups
    Calvino-Louzao, E.
    Seoane-Bascoy, J.
    Vazquez-Abal, M. E.
    Vazquez-Lorenzo, R.
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (06) : 1532 - 1547