This is a continuation of the paper Liu and Wang (2012)[14]. Firstly, we consider a general non-autonomous logistic model with delays and stochastic perturbation. Then sufficient conditions for extinction are established as well as nonpersistence in the mean, weak persistence and stochastic permanence. The threshold between weak persistence and extinction is obtained. Finally, numerical simulations are introduced to support the theoretical analysis results. (C) 2013 Elsevier Inc. All rights reserved.
机构:
Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
Caputo, Luigia
论文数: 引用数:
h-index:
机构:
Pirozzi, Enrica
Nobile, Amelia G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Salerno, Dipartimento Studi & Ric Aziendali, I-84084 Fisciano, SA, ItalyUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
机构:
Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Peoples R ChinaSichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Peoples R China
Yang, Zhiguo
Yang, Zhichun
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Normal Univ, Dept Math, Chongqing 400047, Peoples R ChinaSichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Peoples R China