Nonconvex Splitting for Regularized Low-Rank plus Sparse Decomposition

被引:148
|
作者
Chartrand, Rick [1 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
Algorithms; compressed sensing; optimization; principal component analysis; video signal processing; RECONSTRUCTION; ALGORITHM;
D O I
10.1109/TSP.2012.2208955
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We develop new nonconvex approaches for matrix optimization problems involving sparsity. The heart of the methods is a new, nonconvex penalty function that is designed for efficient minimization by means of a generalized shrinkage operation. We apply this approach to the decomposition of video into low rank and sparse components, which is able to separate moving objects from the stationary background better than in the convex case. In the case of noisy data, we add a nonconvex regularization, and apply a splitting approach to decompose the optimization problem into simple, parallelizable components. The nonconvex regularization ameliorates contrast loss, thereby allowing stronger denoising without losing more signal to the residual.
引用
收藏
页码:5810 / 5819
页数:10
相关论文
共 50 条
  • [21] Low-Rank Plus Sparse Decomposition of Covariance Matrices Using Neural Network Parametrization
    Baes, Michel
    Herrera, Calypso
    Neufeld, Ariel
    Ruyssen, Pierre
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (01) : 171 - 185
  • [22] Enhanced low-rank plus group sparse decomposition for speckle reduction in OCT images
    Kopriva, Ivica
    Shi, Fei
    Stanfel, Marija
    Chen, Xinjian
    MEDICAL IMAGING 2020: IMAGE PROCESSING, 2021, 11313
  • [23] Low-Rank Plus Sparse Decomposition of fMRI Data With Application to Alzheimer's Disease
    Tu, Wei
    Fu, Fangfang
    Kong, Linglong
    Jiang, Bei
    Cobzas, Dana
    Huang, Chao
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [24] Asymmetry total variation and framelet regularized nonconvex low-rank tensor completion
    Chen, Yongyong
    Xu, Tingting
    Zhao, Xiaojia
    Zeng, Haijin
    Xu, Yanhui
    Chen, Junxing
    SIGNAL PROCESSING, 2023, 206
  • [25] Compressed sensing of low-rank plus sparse matrices
    Tanner, Jared
    Vary, Simon
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2023, 64 : 254 - 293
  • [26] Compressing by Learning in a Low-Rank and Sparse Decomposition Form
    Guo, Kailing
    Xie, Xiaona
    Xu, Xiangmin
    Xing, Xiaofen
    IEEE ACCESS, 2019, 7 : 150823 - 150832
  • [27] A NEW MODEL FOR SPARSE AND LOW-RANK MATRIX DECOMPOSITION
    Liu, Zisheng
    Li, Jicheng
    Li, Guo
    Bai, Jianchao
    Liu, Xuenian
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (02): : 600 - 616
  • [28] ManiDec: Manifold Constrained Low-Rank and Sparse Decomposition
    Liu, Jingjing
    He, Donghui
    Zeng, Xiaoyang
    Wang, Mingyu
    Xiu, Xianchao
    Liu, Wanquan
    Li, Wenhong
    IEEE ACCESS, 2019, 7 : 112939 - 112952
  • [29] Low-Rank Regularized Heterogeneous Tensor Decomposition for Subspace Clustering
    Zhang, Jing
    Li, Xinhui
    Jing, Peiguang
    Liu, Jing
    Su, Yuting
    IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (03) : 333 - 337
  • [30] Graph Regularized Subspace Clustering via Low-Rank Decomposition
    Jiang, Aimin
    Cheng, Weigao
    Shang, Jing
    Miao, Xiaoyu
    Zhu, Yanping
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 2165 - 2169